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SUMMARY

The probable effects of solar radiation, primary cosmic rays, van

Allen radiation and meteoric dust on the emissive properties of materials

are reviewed in the light of recently published data.

Experimental data on the spectral emittance (.25 to 27 microns) of

metals with polished and carefully abraded surfaces are presented.

A quantum mechanical theory of optical and infrared dispersion in

metals originally developed by T. Holstein* and previously presented in

unpublished Westinghouse Research Laboratories Research Reports 60-94698-

3-RI and 60-94698-3-R6 (1954 and 1955) is combined with other existing

theories of Umklapp and impurity scattering processes and is shown to

successfully account for the optical properties of metals in the entire

free electron region at all temperatures of interest.

Detailed calculations are presented for monovalent and some poly-

valent metals for which assumption of a symmetric Fermi surface is valid.

Polyvalent and transition metals for which interband transitions are im-

portant and the Fermi surface is not spherical are also considered. In

all, more than a dozen metals, for which reliable experimental data are

available, have been successfully treated.

Calculations of the absorption propeties of super-conducting metals

are also presented in an attempt to determine the extent to which bulk

electron-phonon processes are responsible for infrared absorption by

super-conductors.

Holstein's unpublished Westinghouse Research Laboratories Reports are

the source of the entire theoretical development presented in Section IV

of Chapter 3.



INTRODUCTION

This report is a consolidation of technical surm_ries on the optical

properties of satellite materials prepared and tested by Arthur D. Little,

Inc. under contract DA-19-O20-ORD-4857.

Chapter I presents the effect of satellite environment on the

emissivity of material. Chapter 2 discusses the spectral emittance of

polished stainless steel, aluminum, and magnesium at 50 degrees centigrade

in the 0.25- to 28.0- micron wavelength region. Chapter 3 is devoted to

the theory of optical and infrared properties of metals.
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DEFINITION OF SYMBOLS

SYMBOL

A
s

A (w,T)

A

A (x)

A
B

A
s

A
s

A
n

m
s

m (q)
m

C6

B (_k)

B
(i)

s

B(2 )

d

(_k)

DEFINITION

Bulk contribution to the absorption resulting

primarily from the electron-phonon interactions

Total absorptivity

Perturbing electromagnetic field

Amplitive function

Bulk absorptivity

Diffuse skin absorptivity

Absorptivity of a superconducting metal

Absorptivity of a normal metal

Optical radius of an electron

Phonon annihilation operator

Phonon creation operator

®

T

Complex polarizability

Expansion coefficient

i-th order terms for an electron which was

certain to be at the state _o initially

Second order transition coefficient

b (w,T)

b (_)
ee

T (co,T)

o (T)

Quantum correction factor

b (_,_) Quantum correction factor
ep



SYMBOL

c

_e

51

6
P

5
s

E
m

E_o

i F2J_

Ef

E (T)
g

Ek

E
q

E
o

F (w)

DEFINITION

(K T)

Speed of light

k,q

i + eo - e
£o

Probability per unit time and unit energy

range that an electron at the state E, makes

a transition to a range of final states

c

/4_ 5ds

k

4_ k

Distance at which the intensity of light of

given wavelength falls to i of that at the
surface

Thickness at the metal surface in which most

of the optical skin effect is observed

Electric field

Maximum amplitude

Energy density permit volume of the electro-

magnetic radiation field

Fermi energy

Energy gap

k2 k2

2 m*

Energy of a phonon at the state (q)

Energy at the upper edge of the d-band

Forward scattering amplitude



SYMBOL

F (w)

F (E)

F (E e')

f (E)

g (_)

g5, ge

gsd

g

(r)
o

(_0, T)

M
o

(cO
ee

(_,_)

ee (la,c_)

tt

H
c

(h k)

J

(T__7)

K

k

DEFINITION

Complex forward scattering amplitude

Dimensionless electron distribution

Fermi function at the final stage E 2'

Fermi function

Grueneisen formula

Corrections due to electron-electron collisior

Constant

Constant factor representing the strength of

the electron-phonon interaction

dc damping coefficient

Damping coefficient

Electron-impurity scattering frequency

dc damping coefficient

Over-all damping coefficient

Electron-electron collision frequency

Magnetic field

Vertical field strength

Momentum of an electron

Current density

Imaginary part of the scattering amplitude

Boltzmann constant

Absorption coefficient
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SYMBOL

kI , k2

kd

k
s

k d , ks

k

X
o

M

(M)

m

m _

mv¢
, m* 2 ,

m3'_
1 3

m o

md

m
s

mp

N

N
P

N (q)

DEFINITION

Momentum states

Fermi momenta for the d-bands

Fermi momenta for the s-bands

Momenta corresponding to the highest occupied
levels in the d- and s-bands

Mean free path

Wavelength

Critical wavelength

Mass of the lattice

Impurity scattering

Electron mass

Effective mass of a conduction electron

Three values of effective mass

Rest mass of an electron

Effective mass of d-electrons

Effective mass of s-electrons

Mass of a photon

Permeability

he

KT

Complex index of refraction

Po

M , phonon number density

number of phonon states for E , which are

occupied q



SYMB OL

n

n
o

H e

m S

m S

o

n d

n

n
+

v

v

g

W

W
0

W

q

P
S

P
n

<P>

< p (n)>
(o)

P (h k_:q+-p)

DEFINITION

Index of refraction

Effective number of conduction electrons per

unit volume

Effective number of electrons per unit volume

Effective number of electrons in the s-band

Total number of s-electrons qualified to make

transitions to the empty d-states

Number of empty states in the d-band

Number of paired electrons per unit volume

Number of unpaired electrons per unit volume

Frequency

Limiting frequency

Angular frequency

Frequency characteristic of the electron

Phonon frequency

Power absorbed by a superconducting metal

Power absorbed by a normal metal

Average of P (El)

Average probability per unit time

Probability permit time for the electron to make

the indicated transition

p(±)
(i) (kz k2) Probability permit time for a conduction electron

to make the indicated transition



SYMBOL

(n) (kz k2 )
P (o)

p(n) (E±)(s) sd

P

(x, t)

DEFINITION

Probability of a transition by a joint action

of the electromagnetic and phonon fields

Probability for an electron initially at the

state of energy E in the s-band to make a
i

transition to the final state of energy Ee I
in the d-band

Photon mement um

Perturbed wave function

q

R (_, T)

R
s

R
n

R
ep

R
ee

sd
R
ep

(Re F)

o

_o*

5
o

Momentum
h , phonon wave vector

Reflectivity

Total reflectivity

Surface resistance of superconducting metals

Surface resistance of normal metals

Constant

Constant

Constant

Real part of the scattering amplitude

Position vector

Classical radius of the electron

Effective classical radius of electrons

(+_)

Mass density



SYMBOL

(E)

8, (E), gd (E)

5 (o)
n

S

S

superscript (-)

subscript (-)

0

Z(T)

_0

(w)

(0)

s (_)

(_,T)
S

T

T
1

t

DEFINITION

Density of states function

Density of states

Density of states function of a normal metal

evaluated at the Fermi level

Poynting vector

Electron position coordinate within metal

Phonon absorption

Photon absorption

Spontaneous magnetization per gram atom at
O°K

Spontaneous magnetization per gram atom at
T°K

dc electrical conductivity

Optical conductivity

m e2
e

m*
0

High frequency conductivity of m normal metal

Complex conductivity _i + be i of m super con-
ductor

Total scattering cross section per scattering

center

Dispersion cross section per electron

Absolute temperature

Superconducting transition temperature

Time
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SYMBOL

o
t R

t R

t (,.k)

®

8

v (x)
o

Ud (x)

UL

V

V
o

v (x)
P

V = 5U
P

Vf

W

W (w,T)

<W>

Wsd

DEFINITION

dc relaxation time

Relaxation time

dc relaxation lifetime of an electron

hvg Debye temperature
K

Angle between the mementa k, and

Original undistorted periodic potential

Distorted potential

Longitudinal phase speed of sound

Longitudinal phase velocity of sound

Sample Volume

Atomic volume

Electron-lattice potential

Small change in the potential

Fermi velocity of electron

Fermi velocity of electrons

Joule heat produced per unit time and unit

volume within the conducting medium

Rate of energy expenditure

Power expenditure due to one electron per
unit time

Net amount of power absorbed per s-electron
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SYMBOl

W
s

_d

x

Xl_ XR_ X 3

A (x_)

DEFINITION

Power expenditure of a super conductor

Weight factor due to the density of states of

the d-band

W'
o

ep

Principal - axis coordinates

Dilatation

Absorption of a phonon and photon of energy

h w and E_, respectively

_, _', _" Energy terms in resonance factors

Y

Z
S

Z
n

w

o

ep

E - EF

Surface impedance of superconducting metals

Surface impedance of normal metals

Penetration distance into the metal

m _

= - Relaxation time of a conduction electron
R

o
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CHAPTER 1

EFFECT OF SATELLITE ENVIRONMENT ON THB EMISSIVITY OF MATERIALS

SECTION I. INTRODUCTION

The space around the earth is permeated by rather strong radiation

and particle fluxes of four general types:

I. Electromagnetic radiation from the sun, ranging from radio

frequencies to X-rays;

2. Primary cosmic rays, consisting mostly of high-energy protons

and _ particles;

3. Charged particles trapped by the earth's magnetic field in

belts encircling the earth (Van Allen belts);

4. Meteoric dust particles.

The impact of any or all of these types of particles or radiation

can alter the optical properties of various materials when applied in

a sufficient dose. The effects of radiation and impact damage in three

groups of materials, namely, metals, semiconductors and inorganic solids

are examined. Organic materials will not be considered in this study.

Table I indicates the nature of radiation damage known to occur in

the three selected groups of solids by the types of radiation considered

here. The effects tabulated to the right of the heavy line may be

expected to be of principal importance in bringing about changes in such

optical properties as emissivity, absorptivity and reflectivity.

The occurr_ce of such changes is contingent upon exceeding a certain

threshold dose, specific with each material and each type of radiation.

Some of the radiation effects may be reversed by thermal activation.

Thus, at any finite temperature above absolute zero only a part of the

total effect is retained, another part being lost by concurrent recovery.

Upon prolonged exposure most of the radiation damage effects tend to a

state of saturation.

The radiation levels existing in the near extraterrestrial space,

according to the most recently published data,are reviewed and their

special effects upon rnaterials are considered.
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SECTION II. RADIATIONS IN THE EARTH'S ENVIRONMENT

A. ELECTROMAGNETIC RADIATION

The sun is the source of a very large portion of the electromagnetic

radiation reaching the earth. In emitting most of this radiation, the

sun radiates like a blackbody at a temperature of approximately 5,500 °

to 6,0000K. The total irradiance at the average distance of the earth

from the sun (and outside of earth's atmosphere) is about 2.00 cal/cm2/min,

or 0.140 watt/cm e. [i] Approximately 25 percent of this radiation lies

in the visible spectrum. The region of the spectrum in which the photon

energy of the solar radiation is comparable with the ionization energies

in solids (a few electron-volts) lies in the ultraviolet (wavelength

shorter than 400 m_). Only 12 to 15 percent of the total solar radiation

is contained in the spectral interval from 0 to 400 m_ and of that approx-

imately i0 percent falls in the near ultraviolet from 300 to 400 r%u.

Below 340 m_, direct measurements from high-altitude rockets have yielded

the following spectral distribution of ultraviolet radiation [2] :

Wavelength Spectral Irradiance

340 m_ ii0 _w/cm 2/m_

300 70

260 17

220 3

The irradiance values may be expressed in terms of quantum flux

densities (number of quanta of given frequency per cm 2 per second) by

recalling that at 200 n_u wavelength one quantum (hv) has an energy very

approximately equal to 10-11 ergs. Thus at 200 m_, a spectral irradiance
of I _wlcm 2 corresponds to a quantum flux density of i0 la cm -e sec -l

The extreme ultraviolet region borders on the soft X-ray region

which appears in the solar spectrum with a intensity far exceeding that

corresponding to the blackbody temperature of the photosphere. This

results from the fact that most of the X-ray emission originates in the

solar corona at temperatures of the order ofol06°F. The wavelength of

maximum X-ray emission is centered round 50 A and the total X-ray irra-

diance in the range between 2 and i00 A is found to be approximately

0.14 _w/cm e [3]; in units customar_ in X-ray dosimetry this level would
correspond to 0.014 rads sec -I cm -= (one rad being equivalent to i00

ergs of X-ray radiation energy absorbed in one gram of matter.)

Because the X-ray quanta are very energetic, the photon flux density
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corres_ondin_ to this irradiance is relatively low, of the order of
109cm-- sec-_.

At times of extreme solar activity (solar flares), the level of
X-ray irradiance mayincrease byoa factor of i0 or more, and X-rays of
wavelengths as short as 1 to 2 A maybe emitted [4].

In addition to the electromagnetic radiation of solar origin, there
is probably a high-energy (q-ray) componentresulting from cosmic ray
particle collisions with the residual gas atoms in the upper atmosphere.
While no definite data are as yet available, it is generally thought
that the total irradiance from this source is extremely small.

B. COSMICRAYS

Outside the VanAllen radiation belts in outer space [5] the primary
cosmic radiation is estimated to consist mostly of protons (80 percent)
and _ particles (approximately 18 percent); it appears that there are no
electrons in the primary cosmic radiation -- not counting electrons from
the solar corona. There are someneutrons emitted by the sun which reach
the earth. The remaining 2 percent of the particle spectrum consists
of nuclei of heavier elements, ranging up to iron in atomic weight.
Average energies of these primary particles are of the order of 109
electron volts (ev), but the distribution extends up to energies of the
order of i0 Is ev. A certain fraction of energetic particles is con-
tributed by solar flares. The interaction of the primary cosmic rays
with the upper atmosphere consists of collisions with nuclei of the
atmospheric elements, in the course of which a large variety of secondary
particles are produced. The secondary particles consist of atomic frag-
ments of various types, and these in turn produce tertiary fragments,
and so on. The net result of this process is a nucleonic cascade which,
in the case of very energetic primaries, gives rise to extensive showers
of particles reaching the earth's surface. A by-product of the interaction
of cosmic-ray primaries with the atmospheremay be represented by the
Van Allen radiation belts which consist of rather dense belts of charge
particles (presumably mostly electrons, but also including protons) trapped
by the earth's magnetic field. In the inner belt the particle flux
density reaches maximumat an altitude of 2,000 miles from the earth's
surface, while in the outer belt the maximumis reached at about i0,000
miles in the equatorial regions. Beyond I0,000 miles, the radiation
belts diminish steadily and disappear almost completely beyond 40,000
miles. The maximumparticle flux density in each belt is about 40,000
particles cm-2 sec-I. The particle flux consists of electrons having
energy of at least 0.65 megaelectron volts (mev) and protons of energy
at least l0 mev. The exact proportion of these two types of particles
is not known, nor has their origin been clearly established.
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C. MICROMETEORITE FLUX

Particles of meteoric origin come in a very wide range of sizes

and flux densities. Direct optical and radar observations indicate that

in a mass range between 0.01 and i00 milligrams (mg), there are approxi-

mately 109 meteors incident on the whole earth's atmosphere per day;

this amounts to a total mass of approximately 200 kilograms per day.

Data on the number and size of large meteorites (500 g to i00 mg)

are sporadic. On the opposite side of the distribution, terrestrial

observations are incapable of recording incidence of particles smaller

than about 0.01 mg, although the flux density of such micrometeorites

or meteoric dust must be fairly large, as indicated by light scattering

phenomena such as zodiacal light. A combination of direct observational

data and extrapolations from them as given by Lovell [6] is presented in

Table II.

Most of the meteorites are believed to originate in the solar

system (asteroidal material, see reference 7). Their velocities are

found to lie between approximately ii to 70 km/sec. The minimum veloc-

ity corresponds to the terrestrial escape velocity (11.3 km/sec), the

lowest velocity with which a meteoric body from space can strike the

earth. The maximum velocity results from the combination of earth's

orbital velocity (30 km/sec) and the velocity of escape from the solar

system which at the distance of earth is 42 km/sec. Hence the largest

velocity with which a meteoric body at its perihelion can make a head-

on collision with the earth is 72 km/sec.

The flux density of meteoric particles (number of particles per cm 2

per second) is obtained by multiplying the particle densities Table II,

(Column 4) by their velocity. At an average velocity of 40 km/sec the

estimated flux density of particles in the 10 -3 to I0 -v mg range is

obtained as 4 x i0 -_ particles per cm 2 per second.

Direct observations of micrometeorite impacts have been obtained

only recently [8]. The results of partial analysis of data from the

Explorer I satellite indicate that the average flux density of particles

about 4 microns in size (approximately i0 -l° g mass) is approximately

10 -6 cm -2 sec -l and of particles i0 microns in diameter (approximately

6 x I0 -I'_ g) is about i0 -v cm -2 sec -l. This appears to be in fair

agreement with the data of Table II.
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SECTION III. RADIATION DA_IAGE IN SOLIDS

A. METALS; GENERAL CONSIDERATIONS

One effect that may conceivably lead to an increase in emmissivity

of a metal upon extensive irradiation is the generation of defects that

scatter conduction electrons (interstitials and vacancies) and thus

increase resistivity. Spectral emissivity of metals at long wavelengths

(infrared radiation, X < 5 _) obeys fairly accurately the Hagen-Rubens

law [9]:

i

E = (4o/_)2 (i)

where o denotes the resitivity. A relative increase in resistivity

(dp/p) will cause (at a constant wavelength) and increase L_ (dEX/EX) in

emissivity; thus, for example, a 10-percent increase in ;_ will cause a

5-percent increase in emissivity. We shall examine in paragraph A2 under

what conditions high energy radiations may cause such changes.

Another effect that may increase emissivity of a metal surface ex-

posed to satellite environment is the mechanical damage caused by impacts

of micrometeors. Under these impacts the profile of an optically smooth

surface may become altered so as to scatter incident radiation diffusely,

rather than to reflect it specularly. In addition to the geometrical

(profile) effect, it may be expected that the mechanical impacting will

also increase the resistivity in a manner similar to that observed in

work hardening of metals. We shall not attempt to take the latter effect

into account because very little is known at present about the mechanical

and thermal phenomena that take place at a point of impact of an extremely

fast (v _ i0 _ cm/sec) massive particle upon a metallic surface.

i. Effect of Micrometeors

Spectral emissivity of an optically smooth metallic surface is an

intrinsic property of the material, as indicated by the Hagen-Rubens

law. Strictly speaking, the emissivity defined by this law is the normal

emissivity (emission in the perpendicular direction only); actually,

the angular distribution of the emissivity must be considered. The

emissivity pertinent to the present problem (radiation from a satellite

into the empty space) is the hemispheric emissivity obtained by integration

of the angular emissivity over an entire hemisphere. When the analysis

is performed [I0], it is found that the hemispheric emissivity at low

(normal) emissivity values is larger by a factor of 4/3 than the normal

emissivity. At higher emissivities the ratio of the two is smaller and

becomes 1.0 for a blackbody (see Table III).
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TABLE III. RATIO OF HEMISPHERIC TO NORMAL

EMISSIVITY OF A METALLIC SURFAC_ Ii

En (normal)

E(hemispheric)
E
n

0 0.i 0.2 0.3 1.0

1.33 1.225 1.145 1.075 1.0

When the profile of the originally smooth metallic surface has been

changed by numerous pits and indentations, incident radiation is diffusely

scattered, and the hemispheric emissivity must again be considered. When

the indentations are large compared with the wavelength of radiation

emitted and of smooth profile, the hemispheric emissivity of the surface

remains essentially unchanged. In a genera_ case, when the size of the

indentations is comparable with the wavelength, diffraction effects be-

come significant and a rigorous treatment of the scattering may be quite

complex [ii, 12].

However, independent of the exact nature of the scattering process,

the hemispherical emissivity will be increased by surface indentations

under conditions when multiple reflections can occur (cavity effect).

This situation can be taken into account by an assumption that each

impacting particle forms a crater of an area, A , and emissivity, Ec,c

(larger than the normal emissivity of the surface). Then the resultant

emissivity, E , of the damage surface is:
P

E = N A e + (i - N A )E
p c c c c c o

where N is the number of indentations per cm e, and E
c o

of the original surface (all emissivities are hemispherical). When

N A -i the surface is completely covered with indentations and E
c c P

becomes equal to E .
c

(2)

is the emissivity

The choice of an appropriate value for E depends to a considerablec

extent on the geometry of the indentations. If their depth is at least

equal to their diameter, the effective emissivity, E , of the crater
c

area would tend to the value I (one black body). Studies of crater

formation in metallic targets made at the University of Utah [13] indi-

cate that, at velocities up to 1.5 km/sec, the volume of the crater is

proportional to the energy of the projectile; thus, for instance, in
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aluminum, the constant of proportionality is 0.78 x i0 -±° _m_/erg. If

the validity of this relation is extrapolatedto meteoric velocities,

a particle of i0 -I° gram-mass incident with a velocity of 40 km/sec (800

ergs kinetic energy) would produce a crater of 6.2 x i0 -s cm 3 volume.

Assuming a crater area between 12.5 to 79 x I0 -8 cm 2 (4 to i0 _ diameter),

one obtains for the depth of penetration, values between 0.5 to 0.08 cm,

respectively; if this were actually the case, the meteorites would bury

themselves very deeply indeed, or even perforate the metal. The extrap-

olation of the data from Reference [13] may not be justified, however.

An alternate way of estimating the volume of the craters may be obtained

by equating the energy of impact to the energy required to heat, melt

and vaporize the metal occupying the crater cavity (including the pro-

jectile). Using the same data as above and taking for:

Hfusion = 2.6 k cal/mole and Hva p = 68 k cal/mole (3)

one obtains for the volume approximately 1.8 x 10 -9 cm 3 and for the depth

between 1.5 x 10 -2 to 2.3 x 10 -3 cm (for the same crater diameters as

above); on this estimate, the depth is considerably smaller but the

depth-to-diameter ratio is still large enough to justify the use of

black body emissivity for the crater area. Preliminary data on cratering

by high-velocity microparticles [14] seem to indicate that the diameter-

to-depth ratios remain between 1.5 to 2.5 at lower velocities (about

1 km/sec) but rather abruptly_change to about 8 to i0 (shallow craters)

when the velocity exceeds approximately i0 km/sec. Until more detailed

results are reported in full, the simplest assumption compatible with

the preceding estimates are used, namely that the crater area radiates

as a black body, i. e. E = i.
C

It is now possible to estimate the time in which the existing flux

of micrometeorites will cause a measurable increase in emissivity by

i0 percent.

Assume the original emisivity is 0.I0 and the flux of micrometeorites

of 4 _ size is I0 -_ cm -2 sec -i (paragraph B). Assuming a crater diameter

of i0 _ (79 x 10 -8 cm 2 area), one obtains a full coverage of the surface

after approximately 1.3 x 106 impacts per cm 2. This would require 1.3

x I0 la seconds, or approximately 2 x 104 years. At this damage dose,

the hemispherical emissivity of the surface would reach a value E = i.

However, to increase the original emissivity of 0.i by i0 percent_ i.e.,

by 0.01, only approximately one one-hundredth of the "saturation" dose

would be required, i.e., approximately 400 years.

If the smaller, more numerous micrometeorites contribute significantly

to the surface damage, or if the area of the individual craters is larger

than estimated above, the same increase in emissivity may occur in still

shorter time.



22

2. Effect of High Energy Radiation

The radiation damage effects from the high energy particle component

of the cosmic radiation is considered first. No observational data are

available regarding their effect upon resistivity and emissivity of

metals. In their absence, we will have to extrapolate from the experi-

mental results obtained with deuterons and electrons at energies in the

i to 15 mev range.

The detailed atomistic picture of the damage process is very

complex (see references 15, 16 and 17) and in many respects still not

completely clear. The following is a brief description of the process,

sufficient for the present purpose. An energetic, charged nucleon of

relatively small mass (protion, deuteron, _ particle), upon entering

the metal, dissipates most of its energy in exciting the orbital electrons

and only a small fraction in exciting thermal lattice vibrations. As

it passes near the nuclei of the metal, some of the Coulomb encounters

are occasionally so close that sufficient energy is transferred to

nucleus and it becomes displaced. The threshold energy for such an event

is determined by the condition that about 25 ev must be transferred to

the lattice nucleon in the collision; however, many displaced atoms

acquire energies in collisions which are several times larger than this

threshold energy so that they in turn may be able to produce secondary

displaced atoms. The entire region along the path of the primary knock-

on in which the number of displaced atom-vacancy pairs (Frenkel defects)

may reach several percent of the concentration of the normal atoms, is

sometimes called a "thermal spike" because of the flash heating effect

(_I04°K for-I0 -_l sec) that occurs there. When the original particles

have extremely high energies, such as encountered in cosmic ray protons

(_I09 eV), they may first cause spallation reactions in the metal or

produce cosmic ray "stars" (a shower of fragments); the secondary frag-

ments may then in turn collide with lattice atoms.

Host of the radiation damage in metals disappears rapidly by re-

combination and annealing unless the irradiation is effected at tempera-

tures below about 10°K and the sample is maintained at that temperature

level after irradiation. Even at low temperatures, the number of dis-

placed atoms does not increase linearly with the total number of bombard-

ing particles which passed through the sample because of self-annealing

(radiation annealing). The defect-forming and self-annealing processes

compete with each other according to a differential relation:

dN = _d¢,- _Nd,% (4)

in which N denotes the concentration of Frenkel defects, ¢ the total

flux of particles per cm 2, and _ and _ are constants. Upon integration,

this equation leads to a logarithmic relation which was first derived
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empirically by Marx, Cooperand Henderson [18] in a form:

_ = A [i - exp(-_)] , (5)

describing the observed dependence of increase of resistivity of metals

upon bombardment by 12 mev deuterons. For copper, the constants have

values A _ 0.5 _ ohm cm and p _ 4.8 x l0 b cm2/deuteron. After exten-

sive irradiation, approaches A as a limiting value (saturation).

When copper was irradiated at low temperatures (about 10°K) by

12 mev deuterons to a total dose of 2 x I0 Iv, D cm -2 its resistivity

increased by approximately 0.2 _ ohm cm. After annealing to 77°K,only

41 percent of the initial increase remained and, after further annealing

to 300°K, only 7 percent of the increase was left, i.e., 0.014 _ ohm

cm [19]. Since the resistivity of copper is approximately 1.7 _ ohm

cm, the final effect represents an increase of less than 1 percent; at

saturation, it would reach about 2 percent after a total dose of approxi-

mately I0 i D cm -s

Data for a few other pure metals (Ag, Au, Fe, Co, Ni and W) and

alloys (Cu3Au and CuZn) are also available (see reference 16, p. 424).

Iron is claimed to suffer larger resistance increase than other metals

(however, no data are given), and it appears to retain a larger per-

centage of it upon annealing to room temperature. No work on alloys of

technological importance (e.g., aluminum alloys or stainless steels)

and at elevated temperatures has been published as yet.

Since copper has been investigated in greatest detail, we shall

base the estimate of the radiation damage effect by the satellite

environment on the data for copper as given above.

The principal difference between accelerator particles which have

been employed in radiation damage studies and cosmic radiation is in

their relative energies; the cosmic ray prin_ries are much more energetic.

In the primary proton flux above the atmosphere, approximately 70 percent

of the whole distribution lies between 0.i to 1 bey, and about 15 percent

is between 1 to i00 [20]. The energy of 300 mev is taken as an approxi-

mate center of the distribution.

The average energy loss per centimeter of path length of 300 mev

protons in copper is about i/I0 that of i0 mev [21]; thus, we may

estinmte that a radiation damage resulting in 2 percent increase in re-

sistivity would be reached after a total dose of approximately i019 P

cm -2. In Section II, paragraph B is given a maximum proton flux density

of 4 x 104 P cm -2 sec -I in the Van Allen radiation belt. Thus, the total

dose for 2 percent increase in resistivity (I percent increase in emis-

sivity, see Section III, paragraph A) would be accumulated in 2.5 x 10 ±4

sec or approximately I0 v years.
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In view of this low rate of radiation damage,we mayconsider the
effect of cosmic ray electrons that constitute only a small fraction of
the total radiation flux as completely negligible.

B. SEMICONDUCTORS:GENERALCONSIDERATIONS

Semiconductors differ in their optical properties from other solids
in that their behavior changes from quasi-metallic to quasi-dielectric in
a fairly sharp frequency interval, the position of which depends upon the
nature of the particular semiconductor. In the intrinsic semiconductors,
this transition (absorption edge) results from excitation of electrons
from valency band to the (normally empty) conduction band when the photon
energy is equal or greater than the energy gap, h > E~. The values of
Eg range from 0.14 ev in PbSeto 3.37 ev in ZnOwi_h _e at 0.72 ev and
Si at 1.35 ev near a typical median. Thus with silicon, the absorption
edge is located in the near infrared, at a wavelength X = 1.24/Eg = 0.92 _.
At wavelengths shorter than 0.92 _, i.e., in the visible spectrum, intrinsic
silicon is almost opaque, much like a metal; at longer wavelengths (in
the infrared) it becomestransparent. In germaniumthe absorption edge
is at approximately 1.7 _. In the infrared, beyond the edge, someabsorp-
tion results from the small numberof free carriers normally presents in
the conduction band.

While the absorption index,(nk), which is the imaginary part of the
dielectric constant, is small in the infrared, the real part (n2 ke)
mayattain fairly large values; the reflectivity is also fairly large,
typically about 0.40 to 0.50 in Si or Ge. Under these conditions it is not
permissible to assumethat the emissivity is approximately equal to (I-R)
as in the case of well-reflecting metals. Instead, a generalized form
of Kirchhoff's law for a semi-transparent body must be used. McMahon[22]
analyzed the case of a partially absorbing body bound by two parallel planes
(a slab) and derived a formula for its spectral emissivity:

-l

E X = (I RX) (i- TX) (I RxTx) (6)

where R X and TX are spectral reflectivities and transmissivities, respect-

ively. Since I - T X is the absorptivity, AX, we may also write:

E X = A k (i - RX) [1 - R X (1 - AX)]-I
A(I - R)

- I - R(I A) (7)

Most of the optical studies of semiconductors were made by absorption

[23] and no data are available on their emissivity; however, we can by

means of Equation (6) analyze the existing data. By differentiation we
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obtain for a relative change of emissivity:

dE = 1 - R dA , (8)

E I a(l - A) A

assuming R is independent of A, which is approximately true in the wave-

length range considered here. If we take as a typical value R = 0.5, we

see that the variation of emissivity resulting from a variation in absorp-

tivity lies between _ (dA/A) for A = I (I00 percent absorption) to 1.0(dA/A)

for A - 0 (zero absorption). These formulas can be used in evaluating

the existing data on radiation damage in semiconductors (Section III, para-

graph B2).

i. Effect of Micrometeorites. Since the effect of bombardment by micro-

meteorites is presumed to consist predominantly in a geometrical change

of surface profile, we may expect that the evaluation performed for metals

in Section III, Paragraph AI is applicable also in the case of semicon-

ductors. Thus the time for a I0 percent increase in emissivity would again

be of the order of i00 years.

2. Effect of High Energy Radiation. Radiation damage effects have been

studied in a great number of investigations; a good review of the present

status is given in the 31 papers collected in the special issue of Journal

of Applied Physics, August 1959 [ 2_ . Most of the work reported there is

concerned with carrier transport properties and complex semiconductors. The

variety of experimental detail is overwhelming and not always pertinent to

the present problem. Only one paper, Fand and Ramdas [ 25], deals directly

with optical properties (infrared transmission) of a simple semiconductor

(silicon) as affected by irradiation by neutrons, deuterons and electrons,

and even this case turns out to be quite complex and not yet fully explored.

We shall limit the following discussion to this relatively simple case.

Mmjor changes in optical properties of silicon are obtained after a

total dose of the order of i0 l_ particles/cm 2 (deuterons or fast neutrons)

and saturation is approached after a total dose of about i019 particles/cm 2.

The largest effect is observed on the long wavelength side of the absorption

edge, where the absorption may increase by several orders of magnitude (at

1.2 g by a factor approximately 103). Farther in the infrared, however,

the effect becomes much smaller and eventually reverses, the absorption

being actually reduced after irradiation. This reduction is a result of

removal (trapping) of carriers by the Frenkel defects.

In the near infrared, on the short wavelength side of the absorption

edge the absorption is increased uniformly by a factor of about 2. In

addition to these over-all changes, a number of discrete absorption bands
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i_ produccd by Lrradi.'ttkon, the strolb_,est of which _c_'ur at_ l.S i' and

3.9 H w-lw, lpngth_: we_ker bands are observed at 3.3, 3.5, 6.0, 20.3, 27.0

and 30.1 I,. ]lle radiatt,m damagp c'.ffects do not: anneal out ,q,." readi Iy

as in the case of t,_etals and most of the effect can be relafue(l at tempera-

Cures 4round 300 K.

In view of this complex behavi_u- it is di. fficul[ to give a single

figure for the _agnitude ol- the radiation damage effect upon absorptivity

and emissivity. We may state only Lhat large changes in emissivity n_ty

occur after irradiation by a total F]ux of about 10 z particles�tin::.

The tm_txtmum flux of fast protons in the Van Allen belts is approxi-

mately 4 x lO 4 P cm -_ sec 'l (Section II, paragraph B), and we may estimate

that the radial ion damage efficiency of 300 mev proteins is aboul one-tc/qth

of that of L0 mev deuterons for which the e×perimenta[ data were given

above. Thus a time of the order of 106 years would be required to obtain

the major changes in absorptivity ai,d emissivity (Equation 8), descril_ed

above. Since at a certain wavelength (say, 1.2 [,) the relative increase

may be very large (factor of 102 or more) the time requred to observe a

snmll (10 percent) change in emissivity may be shortened hy a factor at

10" or more, thus bringing the critical exposure time to the ord_,r _f ]00

C. OTHER INORGANIC SOLIDS: GENERAL CONSIDERATIONS

The inorganic solids we shall consider here _rmy be grouped in three

classes: (a) ionic crystals such as alkali halides used in infrared opti-

cal systems; (b) crystals of high refractive index such as used in white

pigments: and (c) non-crystalline solids such as SiO and various glasses.

With ionic crystals, the best known radiation damage effect is the

generation of color centers (F-centers) by absorption of photons of suffi-

cient energy (E d > 2 to 5 eV). A comprehensive review of color centers

in alkali balides may be found [26]. F-centers may b__ described as an

anion vacancy with a trapped electron attached to it; other types of elec-

tron vacancy sites, such as F, V and M centers have also been identified.

These color centers give rise to fair]y board absorption bands in the

visible or ultraviolet spectral regions; their position in the spectrum

[s determined by the nature of th_ _ crystal. In sodium chloride, the center

of the F-band is at approximately /+00 mbt and its ha]f-width (at 25 C) is

approximately 100 mt_. In potassium bromide, the F-band is centered at

630 m_j. Color centers have been studied only by transmission. Emissivity

of radiation-colored crystals has apparently never been investigated. Lt

is, however, possible to make reasonable estimates of spectral emissivity

by means of the the_ry of partially absorbing bodies as presented in Section

III, paragraph B.
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Crystals of high refractive index used as white pigment_ are mostly

of a mixed ionic-covalent type (ZnS, TiO;_, BaTiO_) and thus not so prone

to formation of ionic defects such as 17-cent(_rs. They Fosl)otld to radia(_oi_

by solarization and photo-sensitizatio_l, i.e., l_roc_s_ iuv_l\i_ig phoL_._-

oxidation or photoreduction of the impurity atoms pr_.se_ts in the host

lattice. A most conspicuous example of solarlzatio1_ is coloring of ca]ciut_

titanate pigment containing copper impurity by ultrav_)let light, which

may be described as a photoreduction reactio1_ [27].

CaO- Ti4+02 + hv--_CaO • ]'_t_O _ 2e- (9)

2e- * Cu2_---+Cu (color center).

Similar reactions were studied by Weyl [28] and Goodeve [29], largely be-

cause of their importance for light resistance of paints. It is now well

established that such reactions can be almost completely eliminated by

use of very pure n_cerjals.

In the third category of solids, we should include silicoL_ monoxide

which is being successfully used as a coating for emissivity control of

temperature of the Vanguard satellites [30]. Unfortunately, almost noth_n_

is known about the radiation coloration behavior of this material except

an isolated observation (in this laboratory) that a transmitted flux of

approximately i0 r of 40 kv X-rays is incapable of producing a 'visible

change in the transparency of a SiO film 0.2 lJ.thick.

Radiation coloration of glasses has been extensively studied and a

review with complete bibliography has been' given by Sun and Kreidl [31].

Here too the most prominent effects can be attributed to photo-oxidation

and reduction of cations capable of change of valency (Mn, Fe, V, Ce).

Glasses of high photosensitivity to ultraviolet light have been developed

by Stookey [32] for photoengraving purposes; high-energy radiation sensitive

glasses (mainly of the K-Ba-Alphosphate type) have been developed for

radiation dosime try.

In the opposite direction, the need for radiation resistant glasses

led to the development of cerium oxide compositions that remain colorless

in the visible spectrum even after exposures of the order of i0 _ of ener-

getic T-radiation [33] They do form, however, strong absorption bands

in the ultraviolet. In view of such a vJriety of behavior of different

glass compositions it is obvious that any generalizations are of limited

value and each case will have to be considered individually.

Most types of color centers, in particular F-centers, can be destroyed

by heat, infrared radiation or visible light. _en irradiation is done

at moderate temperatures, the competition between rate of production of

color centers and their destruction results in saturation of the ultimate
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density of centers.

i. Effect of Micrometeorites. In absence of any experimental data on

surface damage of crystals and glasses by micrometeors we may use the same

arguments as in Paragraphs A1 and B1 of Section III and conclude that the

time for a 10-percent increase in emissivity would be probably of the

order of i00 years.

2. Effect of Radiation. F-Centers in alkali halide crystals are readily

produced by irradiation with short-wave ultraviolet or soft X-ray radi-

ation. A total dose of approximately 100 ergs/cm 3 absorbed energy may

produce typically optical absorption at the center of the band of the order

of k I0 cm -i. This is a very strong absorption, corresponding to almost

complete opacity in 1 cm thickness; thus a crystal irradiated to this

density would presumably possess emissivity near 1.0 at the center of the

band.

According to the data given in Section II, Paragraph A, the radiation

flux density in the far ultraviolet (at 200 mg) is of the order of I0 ergs

cm -2 sec -_ (per 1 mg bandwidth). The dose required for intense coloration

would therefore be of the order of i0 seconds. The solar X-ray flux would

cause the same coloration in approximately 1,000 seconds approximately

17 minutes.

Solarizable crystals (impure pigments) become colored by ultraviolet

or X-ray radiation at rates depending upon concentration and type of im-

purity. No consistent data are available, but the times required to pro-

duce visible coloration by solar ultraviolet radiation are of the order of

hours to days. Equivalent X-ray levels are of the order of 104 to 106r.

High purity pigments appear to be virtually immune to visible coloration

by ultraviolet radiation and X-rays. For instance, a high-quality commercial

white paint (DuPont Dulux alkyd base with 95 percent TiO 2 and 5 percent

Zn0 pigment) was irradiated in this laboratory with 50 cv X-rays at flux

density approximately 10_r); a barely visible darkening was observed which

disappeared after three hours exposure to ambient daylight.

A similar high resistance to coloration by X-rays was observed with

silicon monoxide (Section III, Paragraph C). Glasses, on the other hand,

are usually quite susceptible to coloration by radiation, presumably be-

cause of the impurities present. No d_ta are available about the rate

of solarization of glasses by ultraviolet radiation. It is well known,

however, that visible coloration of commercial container glasses by ter-

restrial solar radiation may occur within a few decades; this period may

be estimated to the order of one year in the extraterrestrial environment.

The same effect is obtained by medium energy X-rays after exposure to

approximately l0 s to 10er. The corresponding time at the level of 0.014

r cm-2sec -l (Section II, Paragraph. A) would be of the order of one to ten

years.
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CI[APT ER 2

SPECTRAL EHII'IANCE OF POLISltED STAINLESS STEEL, ALU}.ilNtDI,

AND F_GNESI_[_bl AT 50 C iN TIlE 0.2!)-28 f! WAVELEN(]Til RE_ION

SECTION 1. INTRODUCTION

This chapter descL-ib_-s the _es_]t:s of an exp_rim_:al study of [tie

spectral cmittancc of polished stainles_ sLoe_l, al. um/nLun_ nl_d magnesium

in the wavelength range 0.23-27.0 microns, aU 50C. This v,_,_rk was under-.

taken for the purpose or determining the chai-,ges in wmissiuc, properties

accompanying; varying degrees oL suriace fOttgltllv $5 Of [lift S[]v:CiLLC sal-tlplc5

under study.

SECTION [I. DEF[NJ'IfONS AND TtlEORY

Thermal radiation in-opcrties of a pa<ticulac ,_twl-ial ar_ char_lcter--

ized by a dimensionless parameter, hemispherical apt,octal cmiktance,

, (X,T), defined as the ratio)of the spectral emissive power, ,J(_,T), (pewit-

radiated per unit surface ure:a per unit wavelength interval) of a matcri_l

at wavelcngth,X, and temperature, T, to the spectral cmissive power of a

black body radiation, Jb (/,T), at the same wave!el_gth and temperatut<_:

(_<,O J (>,,'O _ (_0)
Jb(x,:r)

Jb()v,T) for the black body radiator is given by I:]a, Plullck t-adiation

equation :

ctk-:

Jb(X,W) _ c_/T
e -.

where cx and c a are the usual radiation constants. In the ideal case el

a perfectly smooth, flat nmterial, this dimension]ess parameter becomes

the spectra] emissivity, and i_ considered an intrinsic Iimterial property.

Because surface conditions strongly influence the intensity and spectra]

distribution of the emitted radiation, the analogous parameter for real]

nmterials is defined as emiktance. [34]

For opaque nmterJals, Kirchhoff's law relates the emittance,<(X,T),

and reflcctance,r(l.,T),by the equation:
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c(X,T) + r(_,T) - 1 (12)

Measurement of spectral emittance is usually carried out at rela-

tively high temperatures by a direct comparison of radiation emitted by

the sample with radiation emitted by a black body at the same temperature.

In this case, the equation:

_(_,T) : J(_,T) (13)

Jb(k, T)

can be employed for evaluation of results. This method of measurement

is not applicable at low temperatures, particularly for poor emitters

such as metals, since the low intensity radiation emitted by the sample

is nearly equal to the radiation from the surrounding environment which

is reflected by the sample and also received by the detector. To surmount

this difficulty, some form of reflectance method must be employed.

In choosing one of many types of reflectance methods, one must bear

in mind the properties of the samples under consideration. The method

of using a collimated beam incident on the material and reflected directly

to the detector is applicable only to specular reflectors. For the case

of partially diffuse reflectors, such as metals of varying degrees of

surface roughness, it is essential that one measure the intensity of radi-

ation reflected into the entire hemisphere above the sample. For the

wavelength range 0.25 to 2.5 microns, the integrating sphere can be employed;

in the infrared region, one must seek other methods.

Before describing the method used in this particular study, for the

infrared region one should note an analogous method which has been uti-

lized for measuring diffuse spectral reflectance [35].

The basic components consisted of a heated hohlraum (_ 1500°F), a

water-cooled sample (_ 150'F), and an optical system. The sample pro-

truded from the inner wall of the hohlraum which acted as a black body ref-

erence. For a given wavelength, the diffuse radiation emitted by the

hemispherical wall and reflected normally by the sample was compared to

the energy emitted by the black body. The ratio of the net deflections of

the recording system is a direct measure of the normal component of diffuse

spectral reflectance. The principal problems in this method are:

a. to obtain a strict temperature uniformity over the entire

surface of the hohlraum wall,

b. to maintain the hohlraum at a high and very stable temperature,

and

c. to keep the sample at a much lower stable temperature inside the

hohlraum.
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SECTION IV. CONCLUSIONS

Tbu _:iLects ot tile _-_tdiation c_viroment upon |he optical propu_-tics

_L. [{t_ s_ I_cted three c[asses o[ Hmterials arL _ su_m_tarized in Table 4. The

f[[<<Lre:_ given there repL'esent bcs[ estima[es based on available data for

typica] rlp_-csenta[ivc mmteri.als. However, selection of a "typical" rc-

prescutative from su{-h hizhly diversified classes of materials as semi-

cottduc,_ors, <)17 "inorganic solids" is highly arbitrary and iL must be re-

placed An filial analysis by a carcfu[ study of each specific case.
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Consideration of these problems directed us to the alternative method

now to be described.

The basic principle underlying the method of measurement of spectral

emittance employed in this study can be described by referring to FIGURE

i. Consider a sample at constant temperature, T, surrounded by a ther-

mostatically controlled shield at Temperature, T I. This shield forms a

black body which irradiates the sample from all angles within a hemispher-

ical solid angle. The resultant normal component of diffuse radiation

emitted by the shield and reflected from the sample emerges through a

small circular aperture in the shield and is then imaged onto the detector

by a suitable optical system. A gold-plated chopper mirror is mounted

in the beam such that the detector alternately receives radiation from

the sample and from a reference black body held at temperature, T o . The

net signal received by the spectrometer detector represents the difference

in radiant power between the two sources, and can be expressed as:

s I : [C(X,T) J(X,T) + r(X,TI) + W(X,T') - J(X,To) 1 kA_t'_
(14)

where

c(X,T) is the emittance of the sample at X,T

J(X,T) the black body radiant intne_ity at X, T

r(X,T) the reflectivity of the sample

W(X,T') any additional background radiation at same temperature T'

J_X,To) the radiation intensity from the blackbody at T o .

The constants, k, A,_, t, ,_, correspond to the sensitivity of the detector,

the area of entrance slit, the solid angle of view, the effective trans-

missivity of the optical system, and the wavelength band passed by the

exit slit of the spectrometer, respectively. Note that r(X,T) represents

the normal component of diffuse spectral reflectance.

SECTION III. EXPERIMENTAL METHOD FOR THE INFRARED [ 36]

The actual method consists of two runs per sample:

a. The blackbody shield is held at the same temperature as the

sample, T, and
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Figure i. Basic Principle of Operation
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b. the blackbody shield is held at a temperature of liquid nitrogen

T2.

Assuming that any additional background radiation is always constant and

equal for both runs, we have the expression for the difference in signals

between the two runs at X,T:

s : Sl(X,T ) - s2(X,T ) : r(X,T)[J(X,T) - J(X,T2) 1 kA_tp_X
(15)

Now if a gold-plated sample with reflectance $ i is used as a refer-

ence standard, the expression becomes:

[ ]s = sI(X,T ) - s2(X,T ) = J(X,T) -J(X,T2) kAoot_ (16)

The ratio of s/_ gives the normal component of diffuse spectral

emittance through Kirchhoff's law.

s

- r(X,T) : ¢(X,T) (17)

With this method it is important to maintain similar conditions in

enviromental temperature for all runs in order that the background radi-

ation term, W(X,T'),will always cancel out. Also, careful temperature

control of sample blackbody shield and reference blackbody is necessary

for accurate reproducible results.

A schematic diagram of the actual system employed for this study

is illustrated in FIGURE 2. A sample, s, was mounted in a holder which

is heated to the desired temperature by water coils. An iron-constantan

thermocouple was inserted through an approximately O.ll-inch diameter hole

in the side of the sample to a position close to the front center surface

of the sample. With the use of a Leeds and Northrup type K potentiometer

and galvanometer, the temperature of the sample was controlled to ± 0.5_C.

The thermostatically controlled shield consisted of a core wound

with two sets of coils. For run No. i, heated water was circulated through

both the sample holder and one set of the shield coils. For run No. 2,

the water in the shield was removed, and liquid nitrogen was forced through

the other set of coils at a pressure of 5-15 pounds. The sample shield,

and mirrors, M 1 and M2, were enclosed in a dry box which was flushed with

nitrogen in order to reduce the water vapor which would enhance the ab-

sorption in the water bands of the spectrum in a variable manner.

The reference blackbody, consisted of a dewar flask with a blackened
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inside surface and was nmintained at ice temperature with crushed ice.

A gold-plated chopper blade was located at the focal point such that

radiation from the sample passing through the silver chloride window W

and radiation from the reference blackbody at 0°C was alternately focussed

by mirrors, M4 and Ms, on the entrance slit of the spectrometer set at a

width of i000 _. A sodium chloride prism was used in the 2 to 15 _ wave-

length range; for the 14 to 27 _ range, a cesium iodide prism was used,

together with a polyethylene film impregnated with carbon black and placed

at the entrance slit to filter out stray short wavelength radiation.

During a typical run No. I, the sample, was allowed to stablize at

the desired temperature by monitoring a Sargent Thermonitor temperature

control unit which heated a water reservoir. Throughout the run it was

necessary to keep a constant check on the sample thermocouple reading

and to correct for the lag in water reservoir temperature and sample temp-

erature. Instead of taking a continuous spectrum, the data was recorded

as a series of points predetermined from the prism calibration chosen to

avoid atmospheric absorption bands as much as possible. This method of

recording served as a check on any substantial sample temperature drift

as well as representing essentially an average reading for any particular

wavelength. All readings were converted to microvolt units and calculations

were carried out in accordance with Equations (16) and (17).

SECTION IV. THE INTEGRATING SPHERE AND EXPERIMENTAL METHOD

The reflectance measurements for the 0.25- to 2.5- D wavelength

region were made with a Beckman 24500 Reflectance Unit in combination

with a Beckman DK-2 monochromator. The integrating sphere and accessory

optics are illustrated in FIGURE 5. For the samples under study, the

total reflectance (specular plus diffuse) was measured by passing mono-

chromatic radiation through the sphere's entrance ports directly onto the

sample and reference plate at an angle of approximately 5 degrees from the

surface normal. The two components of totally reflected radiation are then

multiple reflected throughout the interior surface of the integrating

sphere. A detector located 90 degrees to the sample surface normal re-

ceives the diffuse radiation illuminating the sphere. A tungsten lamp

source and lead sulfide detector were used for the 0.45- to 2.5- _ region;

for the 0.350- to 0.650- _ region, the tungsten lamp and photomultiplier

were used, and for the 0.250- to 0.400- _ region, a hydrogen lamp source

and photomultiplier were employed.

In order to determine the i00 percent reflectance signal of a refer-

ence, two Mg0 plates were prepared by coating them with magnesium oxide

smoke from a burning magnesium ribbon. Both plates were then mounted in

the two exit ports of the integrating sphere and a signal, ri(_), was
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process, one would expect a noticeable effect for short wavelength reflec-

tion. In this region the light will be trapped by the grooves and pits and

become diffusedly reflected, thus increasing the percentage of diffuse

reflection and decreasing the total reflection by trapping. At long wave-

length this process does not occur, diffuse reflection becomes negligible

and the surface has a greater effective smoothness. Similar blocks of

aluminum and magnesium were polished by the usual abrasion methods.

In all the experimental curves this trend toward greater reflectivity

(i.e. lower emittance) with longer wavelengths is observed. Also, compar-

ison of samples of the same material but of different surface roughness

reveals that they all approach essentially the same value at long wave-

lengths where the effects of surface irregularities become less important

to the reflection process. In regard to most of the reported curves one

may note a certain irregularity at approximately 3 _ and 14 _. At the

3-_ point the Beckman Integrating Sphere data are joined to the Perkin-

Elmer data, and it is not unreasonable to expect some slight discontinuity,

especially when one notes that the lead sulfide detector response will

tend to fall off at this point. (Note also the change in wavelength scale
at 3 _ on the graphs.)

The 14-_ region represents the transition from the sodium chloride

prism to the cesium iodide prism and the introduction of the polyethylene

filter to reduce short wavelength scattered light. Finally, the slight

increase in emittance at very long wavelengths (25 _ and greater) in some

cases is unreal and probably produced by an increase in scattered light
which the detector receives from the enviroment.

Experimental results for three samples of stainless steel 316 are

shown in FIGURES 6, 7, and 8; a very rapid decrease in emittance occurs

between 0.25 _ and 0.75 _ at which point the curve acquires a much more

gradual slope until the region of 26 _ where samples No. 2 and No. 3

assume a value of approximately 0.06 _; however, sample No. 4 at that

point has an emittance of about 0.085 which coincides with the greater

roughness of its surface recorded by mechanical measurements.

A sample of stainless steel 304 was also measured and is shown in

FIGURE 9. This exhibits the characteristic slope and approaches a probable

value of 0.075 at 26 _. This curve indicates a slight error in the tran_

sition region of 2.5 _ to 6.5 _ noted previously. The deviation around

6 _ can be attributed to water vapor absorption. Also the apparent rise

at 24 to 28 _ is due to scattered light.

The emittance curves for aluminum 20-24 are shown in FIGURE I0.

Measurements throughout the 0.25- to 27.0- _ range were carried out on

sample No. 3. The sharp decrease in emittance between 0.25 and 0.5 _ is

not quite as striking as for the stainless steel but is still a characte-

ristic at short wavelengths. In the wavelength interval 0.5 to 1.0 _,
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recorded throughout the entire spectrum. This signal represents the ratio

of intensity reflected by the sample port to that of the reference port.

IM i (X)

-- (18)
IM e

This procedure was repeated with the MgO plates in reversed position,

giving the term r_(X):

IMe(X) (19)

r_(X) - IMI(X)

as:

An averaged I00 percent signal for the Mg0 reference is then expressed

rl (X) + r_(k)
le +I e
Mi M2

r'(k) = = (20)
o 2 2 IM± IM2

The difference between the true 100 percent response of the recorder

and the MgO i00 percent signal represents a correction term:

,,_r' (X) : i00 - r'(X) (21)
0

If a sample now replaces one of the reference plates, one measures

the ratio of sample to reference reflectance, r', and when the correction

term is included:

r(X) : r'(l) + Jir'(X) -
O

I
s (22)

IMo

If the true reflectance of Mg0 reported in the literature [38, 39,

40, 41, 42] is denoted as:

IM
O

R - (23)
o Io

then the absolute reflectance of the sample is easily calculated as a

product of R o and r.

ro = rRo = s (24)

To J



42

Again utilizing Kirchhoff's law, Equation [20], the spectral emittance

in the 0.25- to 2.5- _ range can be determined.

SECTION V. PREPARATION OF SAMPLES

The front surface of all samples were initially roughened with a

variety of emery papers. The aluminum and magnesium were then brought to

a fine polish with the use of a grinding wheel and alumina powder.

The stainless steel samples were electropolished with a solution con-

sisting of:

300 ml orthophosphoric acid

530 ml glycerine

90 ml water.

After the completion of the experimental measurements the arithmetic

average surface roughness in the X and Y direction was determined on a T

and H Talysurf-Model 3 instrument. The results, reported as center line

average roughness, are listed in Table V. It should be mentioned that the

magnesium surface acquired a cloudy appearance due to the formation of an

oxide layer.

SECTION VI. EXPERIMENTAL RESULTS

Measurements were made on samples of magnesium, aluminum,and stainless

steels of various surface roughness throughout the 0.25- to 27.0- _ wave-

length range at 50°C temperature. The stainless steel samples consisted

of blocks approximately 2 x 2 x 0.5 inches in size having their front sur-

face electrolytically polished to a bright mirror appearance. "In general,

physical and chemical properties which have been determined on mechanically

polished surfaces are not characteristic of the bulk metal. However, if

the necessary precautions are taken electropolishing methods can produce

a brilli@nt, smooth film-free surface with properties characteristics of

the metal rather than of the method of preparation." [43]

The use of electropolishing in the preparation of these samples was

made with the intention of removing the amorphous deformed layer (termed

the Beilby layer) produced by the initial abrasion treatment. However,

as evidence by the surface profile measurements and photomicrographs, the

samples still have scratches and pits. The pitting is commonly observed

in the case of stainless steel due to the differential attack of the multi-

phase alloy. From consideration of the physical nature of the reflection
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3. Variations in atmospheric absorption;

4. Sample temperature errors;

5. Use of a large slit width;

6. Prism calibrations;

7. Amplifier drift;

8. Other, such as slight shifts in optical alignment.

The calculations (i above) were based on the assumption that the gold

standard had a reflectivity equal to I. However, it is known that elec-

trolytically deposited gold has a reflectivity of approximately 0.98 between

7 _ and 14 _ wavelengths [44] (FIGURE 13). A percent error of 2 percent

in the calculated reflectivity of a sample will result from a 2-percent

error in the assumed reflectivity value for the gold standard. This is

easily seen from Equation (17) where R(X,T) is now the true reflectivity

of gold, and r'(X,T) equals the measured reflectivity of the sample.

r'(x T) - s r(X,T)
' E - R(X,r) (25)

Thus, the connected value of reflectivity is given by:

r(X,T) = R(X,T)r' (X,T) (26)

A. CHANGES IN TEMPERATURE OF THE ENVIROMENT (2 ABOVE)

Changes in the temperature of the environment should also be con-

sidered when discussing scattered radiation, since any such change will

also affect the intensity and spectral distribution of scattered radiation.

These Lemperature variations were kept to a minimum by carrying out the

experiments in a temperature-humidity controlled room. In addition all

measurements were made during equivalent time periods each day to main-

tain similar conditions.

B. VARIATIONS IN ATMOSPHERIC ABSORPTION (3 ABOVE)

Although the experimental equipment was located in a temperature-

humidity controlled room, large daily variations in humidity will affect

the radiation intensity within the strong absorption bands, and particularly

in the 6-_ region. With a large number of data points one can take into

account such discontinuities when drawing the curves. For the path length
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there appears to be a definite bump (rising from a value of about 0.14

at 0.5 _ to a small peak of 0.18 at 0.8 _). A thin AI203 film on the sur-

face indicating an absorption resonance frequency may account for the peak

at this point. The curve then continues to decrease with longer wavelengths

in the usual manner; the 3-_ transition region occurs as in previous curves.

The emittance levels off at a shorter wavelength than that of stainless

steel and assumes an average emittance of 0.035 from 8 _ to 27 _. A curve

for No. 1 has been drawn in this region for comparison and one notes its

value to be 0.023, indicating a smoother surface. Data for samples Nos.

1 and 4 have also been drawn between 0.25 D and 2.5 _. In general, all

three samples have nearly the same emittance, with the same bump between

0.5 _ and 1.0 _. This fact indicates that either the surface roughnesses

of all three samples are essentially equivalent, or else an AI203 film

on the three surfaces is covering up any effect of differing surface con-

ditions which otherwise would be observed if the film were absent.

The emittance curves for aluminum 70-75 are shown in FIGURE ii. This

exhibits a shape very similar to that of aluminum 20-24, with the typical

bump in the 0.5-1.0 _ region. Also, between the wavelengths of 6-27 _ it

takes on a fairly level emittance of about 0.035 as in the case of aluminum

20-24. However, in this case, sample No. 3 appears to have a higher emit-

tance than samples No. 1 and No. 4 in the 1.0-3.0 _ region.

The curves for magnesium are shown in FIGURE 12. In the 0.25- to

2.5- _ region one observes a striking decrease in emittance with longer

wavelength in addition to a significant difference between the values for

samples Nos. i, 3, and 4. Sample No. 4 has a much greater emittance through-

out this region whereas No. i, although having a larger emittance than

No. 3, does approach it around 0.75 _.

The bump which appeared between 0.5 _ and 1.0 _ in the case of aluminum

does not appear in the magnesium curves at all. The measurements out to

27 _ were made on sample No. 3 with greatest attention, although the short

wavelength data definitely indicate that all three samples approach a

similar value for the longer wavelengths, as would be expected. Between

6 _ and 27 _ the emittance assumes a constant value of approximately 0.055.

Again the apparent rise from 22 to 27 _ is unreal and due to scattered

light.

SECTION VII. DISCUSSION OF EXPERIMENTAL ERRORS

The chief source of error for the 2-27 _ wavelength range are:

I. Possible error in the true reflectivity of the gold standard;

2. Changes in temperature of the enviroment;
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in air involved, absorption in other regions of the spectrum will change

the general level of measured reflectivity to a negligible degree.

C. SAMPLE TEMPERATURE ERRORS (4 ABOVE)

Errors due to sample temperature drift are negligible, the variation

being less than ± 0.5'C, during measurements. Any effects of such tempera-

ture variation on the radiation intensity were undetectable at the low

temperature level of 50_C.

D. INSTRUMENT ERRORS (5, 6, 7, 8 ABOVE)

Errors arising from items 5, 6, 7 and 8 are difficult to assess. By

using a constant slit width throughout measurements, allowing an adequate

warm-up time for the electronic equipment, and making careful initial

optical alignment and prism calibrations, these errors were minimized.

Constant cheeks on the amplifier gain and zero points indicated that the

drift was negligible. From the scatter of data points, the results point

to a probable over-all error of fr = ± 0.02. One of the advantages of this

method is the elimination of a pyrometer or standard black body which would

cause additional errors in experimental results. Also, it eliminates the

necessity of absolute flux calibrations and the subsequent tedious calcu-

lations.
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CHAPTER3

2"IIEORYOFOPTICALANDINFRAREDPROPERTIESOFMETALS

SECTIONI. INTRODUCTION

The interactions of metals with an external electromagnetic field
manifest themselves in different forms depending on the different spectral
ranges that are involved. Twoparticular examplesmaybe cited, the dc
electrical properties which we observe by applying a static electric
field, i.e., the zero-frequency limit and the optical and infrared
dispersion characteristics which are observed by meansof proper optical
apparatus where the frequency spectrum extends from the far infrared to
the ultraviolet.

The present work is concerned with the normal dispersion character-
istics in the optical and infrared range of the spectrum and the nkanner
in which these properties are related to the dc electrical properties
and other lattice parameters of metals. Inasmuchas we are concerned
with normal dispersion in contrast to anomalous dispersion, the frequency
spectrum that is involved in the present work must be sufficiently re-
movedfrom the anomalousregion in which photoelectric resonances of
bound electrons becomeimportant. Most of the metals that have been
studied are found to have their lowest resonances in the wavelength region,
0.3 _ 1.0 micron, and normal dispersion is observed for wavelengths
longer than these values.

According to the free electron theory of metals, the free valence
electrons are responsible for the normal dispersion of optical and in-
frared waves as well as for electrical conduction.

Ever since the discovery of electrons and Sommerfeld's successful
explanation of the phenomenonof thermionic emission based on the free
electron picture of metals and on the Thomas-Dirac statistics, it has
been a popular notion that both optical dispersion properties and elec-
trical properties maybe explained on a commontheoretical basis and that
these two aspects of me_allic properties are interrelated in a rather
simple manner. Granted that the simple free electron description of
metals is valid, such a notion finds justification in that both the
optical dispersion and dc electrical properties are described by the
equation of motion of the conduction electrons subject to the general
description in terms of Ma_#ell's equations, the difference between the
two aspects of metallic properties arising solely from the different
spectral ranges that are involved.

Therefore, it maybe expected that various frequency-dependent
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optical quantities such as the Optical conductivity, _(_), and the di-
electric constant, _(_), which described the optical dispersion properties,
should also describe the dc electrical properties such as the dc electrical
conductiveity, _ , and dielectric constant, whenwe take the limit
_)_O in various dispersion equations. On the other hand, the temperature-
dependenceof various optical quantities maybe predicted from the more
widely studied electrical properties.

Along with the development of quantummechanics and quantum
statistics, muchprogress has been madeon the theory of electrical
conduction in metals during the past 50 years, and current theory is
successful in explaining the observed electrical conduction phenomena
both qualitatively and quantitatively in most of the noble and alkali
metals, and qualitatively in the transition metals. Modernphysics is
successful in explaining qualitatively someof the salient features
found in alloys, e.g., Matthiessen's rule, dependenceof resistivity on
the relative concentrations of the constituent metal atoms in a random
alloy, someunusual properties of the transition metal alloys, etc.
Comparedwith what has been done on the electrical properties of metals,
surprisingly little progress has been madeon the theory of optical and
infrared dispersion in metals. In fact, there is no satisfactory theory
available that can predict the dispersion properties in the entire free
electron part of the spectrum of even the noble and alkaline metals.
Existing theories enjoy a limited success in various segmentsof the
spectrum. However, the less said the better with regard to the tran-
sition metals and _lloys. This is surprising for theoretically, a
description of optical and infrared dispersion properties is expected
to be very much like that of electrical properties, at least to the ex-
tent that both involved free conduction electrons, and differ from each
other only in the extra frequency-dependenceappearing in th_ optical
quantities.

Theoretical discussions on the behavior of metallic conductors under
the influence of electromagnetic waves were first given by Hagenand
Rubenson the basis of the classical Maxwell theory of electrodynamics,
and later by Drude on the basis of the free electron description of
metals and Maxwell's theory. Drude's theory applies to a wider range
of the spectrum than the Hagen-Rubenstheory, and the two theories are
identical at the longer wavelengths where the optical conductivity,
_(_), can be replaced by the dc conductivity, ¢(O).

The limitations that are inherent in these theories have been
pointed out in a numberof references upon comparison with experimental
data. In general, the theories fail in the higher frequency region of
the spectrum (i.e., _ < KT) and also at low temperatures. The Drude
theory has found a qualitative success in a variety of metals in that
it offers a good fit to the experimental dispersion curves, and yet
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fails quantitatively in that the dc conductivity predicted by the best-

fit theoretical curves is always smaller than the measured values. The

exceptions are some liquid metals such as mercury and gallium. In any

case, the theory fails completely at low temperatures. Despite these

limitations, the classical free electron theory of Drude has remained the

most successful of the existing theories in the sense that it presents

all aspects of dispersion properties in a rather self-contained manner,

especially when combined with the Kramers-Kronig relation. Although

there have been some attempts made to improve the Drude theory so that

it would be applicable to a wider range of the spectrum and to extend it

to multivalent and transition metals, they fail to remove the limitations

that are inherent in the original Drude theory since these attempts were

not made through a rigorous theoretical formulation, but rather by

introducing additional Unknown parameters.

According to the classical theory, the optical absorptivity

(= emissivity) of a pure metal vanishes at very low temperatures in

contrast to experimental observations, and a metal can have a nonvanish-

ing absorption or resistivity (Restwiderstand) only if a substantial

amount of impurities is present. Although the theory of anomalous skin

effect (i.e., anomalous in the sense that the distance traveled by an

electron between collisions is larger than the skin depth, l=v F _ > _s)

proposed by Reuter and Sondheimer, and later elaborated by Dingle, has

succeeded in explaining a part of the observed absorption at low temper-

atures, the gap between the theoretical and experimental values still

remains to be accounted for and amounts to anywhere between 20 percent

~ 80 percent of the measured values of the total absorptivity.

Practically all of the existing quantum mechanical theories of

optical and infrared absorption in metals have been developed since 1954,

and were designed to remedy the gap between the classical theoretical

values and the observed values of the absorptivity in the near infrared

and at low temperatures. However, none of these theories show attempts

to _ormulate different aspects of the optical and infrared dispersion

properties in such a self-contained form as is possible in the classical

Drude theory. They are confined to derivations of absorptivity as a

function of temperature and wavelength in a particular segment of the

infrared spectrum. The most outstanding of these theories are those

of Holstein, and those developed more recently by Gurzhi and Silin of

Russia. It was Holstein who originally suggested that, unlike what

is predicted by the theory of anomalous skin effects, a bulk absorption

process in which an electron absorbs a photon near the surface and then

diffuses into the bulk interior of the lattice emitting a phonon to

conserve energy and momentum, may play a significant role at low temper-

atures. Holstein calculated absorptivity in the near infrared region

(_ ~ IN) , and the results were already sufficient to prove that, at

low temperatures too, the bulk electron-phonon collisions are not less
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important than the skin effects of Reuter, Sondheimer, and Dingle. More

recently, Gurzhi made an attempt to formulate the total absorptivity

including both the skin effects and the Holstein's bulk mechanism to be

applicable to a wider range of spectrum than that defined by

_ >> _ >> KT. Gurzhi's result was, at least in its form, more general

than that of Holstein's formulas, and will be shown to agree identically

with the abosrptivity derived in the present work in the limit,

_ >> Kn,KT. Following the semi-classical calculations by Silin of the

contribution by the electron-electron collisions to the absorptivity

based on the Fermi-liquid theory of Landau, Gurzhi improved Silin's

method by use of a more rigorous Fermi-liquid theory. He pointed out

that the electron-electron collisions may be significant at high frequency

and at low temperature, and subsequently incorporated these into his pre-

viously obtained formula for the total optical absorptivity. The theo-

retical method used by Gurzhi is essentially that of obtaining pertur-

bation solutions to the kinetic equation for the electron distribution

functions taking into account various collision terms. This is very

much like what was done by Wilson in his calculations of various dc

electrical properties. Holstein used a straightforward quantum mechanical

perturbation theory and calculated various transition matrix elements

using a semi-classical form of electromagnetic perturbation. There are,

of course, other sophisticated theoretical techniques available for

calculating the optical properties of metals such as!the method of

temperature-dependent Green's functions developed by Martin and Schwinger

and independently by Kogan, and also the S-matrix formulation which was

used by Gurevich and Uritskii in their theory of infrared absorption in

crystals, mainly for semi-conductors, in the presence of external magnetic

field and in the photoelectric region. However, the remarkable success

found in the results obtained by Holstein and Gurzhi in the high-frequency

region, and also in the results obtained in the present work for a wider

range of spectrum, attest to the fact that a straightforward quantum

mechanical perturbation theory is satisfactory for both qualitative and

quantitative calculations of the optical properties, at least in the

free electron region of the spectrum. On the other hand, a quantitative

calculation of optical properties in the resonance region (i.e., for

X _ I_ for many metals) can be offered when the general results obtained

on photoelectric absorption in crystals, such as that by Gurevich and

Uritskii, are extended to include the resonance absorption in metals.

The main body of the present work consists of calculations of

various optical and infrared dispersion and electrical properties as

well as other related lattice parameters based on Holstein's bulk mechan-

ism. In this sense, the theory by Gurzhi is the closest to the present

work inasmuch as it is also based on the same mechanism for electron-phonon

processes. Although Gurzhi's formula for absorptivity agrees with the

present theory identically in the near infrared, where _ >> _, KT,

there are some important differences between the two, and the shortcomings
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of Gurzhi's theory will be explained.

A theory maybe judged on the basis of the following obvious set
of criteria:

(a) It has to provide a good fit in frequency-dependence to the
optically-observed curves for various optical quantities;

(b) The theory whenbest fitted to the optical curves should re-
produce various dc electrical and lattice parameters in satisfactory
agreement with the measuredvalues;

(c) In order to satisfy the correspondence requirement in the
classical region, the theory should produce successfully the well-known
and time-tested classical formulae for various dispersion properties in
the classical case of small he or high temperature; and

(d) As another requirement of the correspondence it should be
able to reproduce the well knowntemperature-dependence of various dc
electrical and somethermodynamicproperties in the limit of zero
frequency or infinite wavelength.

Noneof the existing quantummechanical theories succeed in
satisfactorily meeting all four of these criteria. Somesalient features
of the present theory shall be surmnarizeditematically, and it is expected
that this will also serve as comparison between the present theory and
the existing theory.

In the present theory, the quantummechanical corrections to the
classical dispersion formulae are mostly re*ealed in the frequency- and
temperature-dependence in the over-all damping coefficient, F (oJ,T).
F(_,T) differs significantly from the corresponding dc value, F_(T),
which is the one used in the classical Drude and Hagen-Rubenst_eories,
only in the spectral and temperature ranges where the quantumeffects
are important. This is conveniently represented by introducting the
relation:

F (o.),T)= b (_o,T)F (T) (27)
O

where the b-factor is particularly important in the quantum mechanical

region of high frequency and low temperature. Aside from the appearance

of the b-factor, the present theory offers various optical and infrared

dispersion formulas which bear very close resemblance to the well-known

classical formulas. Thus, it is clear that establishing the frequency-

and temperature-dependence of For b will occupy the heart of the present

theory. Results for non-transition metals apply mostly to those metals

which have _ TS-dependence on temperature of the electron-phonon part
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of the resistivity at low temperature. The transition metals are shown
to exhibit, in temperature and frequency dependences, properties distinct
from those of non-transition metals. The ferromagnetic and paramagnetic
transition metals are investigated independently. It is found that the
electron-phonon part of the dispersion formulas for transition metals for
which the number of s-electrons is completely compensated by the number

of empty states (positive holes) in the d-band, leads to_TS-dependence

of dc resistivity, while the formulas for those transition metals in

which the total number of S-electrons ar_ not sufficient to close the

d-band, lead to a negative exponential temperature-dependence at very

low temperatures. There are further differences in temperature-depend-

ences between ferromagnetic and paramagnetic transition metals which

are offered by the theories of Weiss and Heisenberg, at low temperatures.

Generally, the over-all damping coefficient, F(_,T), is a sum of

the contributions by the electron-phonon collisions, electron-electron

collisions, and the impurity scattering such that:

F(t0,T) : Fep (_),T) +Fe e (_,T) +FM (T) (28)

where the subscripts (ep), (ee), and (M) represent the three processes

in the order mentioned above, and where the quantum correction factors,

b (_,T) and b (_,T), may be defined for the first two processes in
ep ee

such a way that:

F ep TM F oep(T)bep(_'T)

Fee = Foee(T)bee(_0,T)

_oe_ Foee r Mb(_,T) = b (_0,T) + -- b (_),T) + --
ee I_ /

F ° ep F o o

Among the three processes, only the electron-phonon process is important

at ordinary temperatures and in the free-electron region of the spectrum,

provided that the metal sample is a reasonably pure one. Many studies

have been made on the contributions of the electron-electron collisions

and the impurity scattering to optical and infrared absorption in metals.

Among the latest developements, the most prominent are the wbrks of

Pitaevskii, Silin, and Gurzhi. According to these authors, the electron-

electron collisions may contribute significantly either at very low

temperatures or in the high-frequency limit of the infrared spectrum,

while the impurity scatterings are important at very low temperatures

even for a reasonably clean sample. In particular, Gurzhi has derived,

a frequency-dependent electron-electron damping coefficient Fee(_,T),
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as well as a general formula for the impurity contribution to the damp-

ing.

In the present work, a variety of metals, all of which are supposed

to be of very small impurity content, have been investigated as to the

relative importance of the three mechanisms of damping in the high-

frequency region and also at low temperatures. As the result of this

investigation, it is found that, although the suggestion of Pitaevskii,

Silin, and Gurzhi may apply to some special cases of transition metals,

it does not strictly apply to other metals in most of the quantum

mechanical region of the free electron spectrum. In fact, the electron-

phonon process or the Holstein mechanism alone, in the form that is

derived in the present theory, explains quite successfully (viz., up to

2 N 5 percent) the low temperature (4.2°K) near infrared (i _ 1.5_)

absorptivity of all the metals for which experimental data are available.

The calculations on transition metals in the present theory suggest

that the electron-electron collisions and impurity scatterings are

particularly important for those transition metals, and similarly for

other multivalent _on-transition metals, in which the interband tran-

sitions required a non-zero momentum transfer. For a transition metal of

this kind, only the phonons of energy larger than a certain non-zero

value are effective in the transitions, and as the result of this the

electron-phonon, part of the low temperature resistivity has the pre-

viously mentioned negative exponential nature. This applies to all the

transition metals whose S-electrons are not sufficient to close the

d-band, and the low temperature resistivity is due mostly to the electron-

electron collisions with the well known Tm-dependence on temperature as

well as to the temperature-independent impurity sactterings (Restwider-

stand). On the other hand, for those transition metals whose S-electrons

are exactly compensated by the positive holes in the d-band such as the

tri&d, Pt, Ni, and Pd, the T3-dependence of the electron-phonon part

plus the Ta-dependence of the electron-electron collision term define the

temperature-dependence of the low temperature resistivity to the extent

of neglecting an additional T-dependence in the electron-phonon part.

This is partly in contrast to the earlier concept that the electron-

electron collisions make predominant contributiens at low temperatures
for all transition metals.

Strictly speaking, the Ta-dependence is predominant in the tran-

sition metals other than the traid at temperatures smaller than the

value given by:

E _ _UL kd - k <s : _ 10°K (30)
K

which is also the lower limit in the summation over the phonon states,

where kd, ks are the Fermi momenta for the d- and s-bands, UL is the
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longitudinal phase speed of sound, and K is the Boltzman constant.

All the optical dispersion quantities, including the optical

conductivity, _(w, T), the optical dielectric constant, t(w,T), and

absorptivity, A(w,T), that are calculated in tbe present theory, sbow

not only good fit to the corresponding experimental curves throughout

the entire free-electron infrared spectrum, but also reproduce various

dc electrical properties in excellent agreement with the directly measured

values for a number of non-transition and transition metals. They also

reproduce exactly the well known temperature-dependence of the dc

electrical properties (hence, also of heat capacity and thermal conduc-

divity),such as the famous Gr_neisen formula G/@\_ for non-transition

metals. The Gr6heisen formula has long been known to describe tempera-

ture-dependence in excellent agreement with observations for T not too

much larger than G.

It is pointed out, as the result of the present theory, that the

quantum corrections represented by b(w,T)-factor can also be significant

in a relatively long wavelength region of the infrared, when _w _ KT.

This is clearly illustrated in the formula for the reflectivity:

R(co,T) _ I - 2 ncd (T) (w,T)
(31)

which applies to the Hagen-Rubens limit of the spectrum or, when w 2 << _2,

where the b-factor, although close to unity in this spectral range, is

usually different from unity by a small fraction, and becomes essentially

eqbal to unity when _ << KT in which case the formula is identically

the well-known and time-tested Hagen-Rubens formula. In this sense,

Equation (31) may be called the generalized Hagen-Rubens formula.

The present theory also enables us to estimate such lattice parameters

as the electron density, the effective mass values of optical electrons,

the Fermi energy, the upper edge of the d-band in the transition metal,

and longitudinal phase speed of sound, etc. The heat capacity and thermal

conduction properties also follow as by-products of the present theory.

The impurity content can be estimated from low temperature optical data,

even for a sample with such a small impurity content as to be undetect-

able at ordinary temperatures.

The caluclations for absorptivity at very low temperatures include

both normal and superconducting metals. For the superconducting metals,

or below the superconducting transition temperature, the calculations

are assisted by the theory of superconductivity of Bardeen, Cooper, and

Schrieffer. That Holstein's bulk absorption process might be important
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in a superconductor was suggested resently by Richards and Tinkham.
The calculations in the present work are intended as a check on the said
suggestion and to see whether the existing gap between the experimental
absorptivity and the predictions of Mattis and Bardeen can be explained
by Holstein's mechanism. It maybe noted that the absorptivity for light
quanta, _, smaller than the energy gap (at T O°K) has been given by
Schrieffer and has been shownto agree well with experiments. At the
present, no definite conclusion can be provided on the basis of the
present calculations because of insufficient experimental data.

Finally, somewords need to be said regarding possible limitations
in the present theory. The limitations mayresult mainly from two causes:
first, the use of the simple Debyemodel and second, the assumption of
spherical Fermi surfaces.

The first assumption leads to difficulties at very high temperatures
(T >> ®), where the Umklappprocess is important. The samedifficulty
is found in Gruneisen's formula for dC resistivity at very high temper-
atures.

Another less serious aspect of limitations in the use of the Debye
model is in neglecting the anisotropy amongthe longitudinal and two
transverse directions, whereas in more accurate calculations, one needs
to consider three componentsof the phase velocity of soundas well as
three characteristic temperatures instead of the Debye temperature alone.
This problem of lattice anisotropy is of no concern for a polycrystalline
metal sample. Perhaps the best justification for using the simple Debye
model is in the good agreement found between the theoretical and experi-
mental values of heat capacity.

It is well knownthat the Umklappprocesses are important at very
low temperatures, especially for those metals in which the interband
transitions are important. At very low temperatures, the Umklapp
processes enter into various physical quantities through electron-
electron collision terms and do not enter into the electron-phonon pro-
cesses, since the angular deflection involved in an electron-phonon

scattering is in the order of (_), which is certainly much less than
\-/

unity. It is known that contribution by electron-electron collisions to

the over-all damping coefficient vanishes when Umklapp processes are not

present. In short, at very low temperatures, the Umklapp processes are

important to the extent that the electron-electron collisions are import-

ant, and hence are automatically taken into consideration in the present

theory by incorporating the effects of electron-electron collisions into

various dispersion formulas.

The limitations that are associated with the assumption of a
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spherical Fermi surface are well known, and are often discussed in the

literature. In general, this approximmtion works well for most mono-

valent metals, such as the noble metals Ag, Au, and Cu, and also for

some multivalent metals for which the interband transitions are not im-

portant. On the other hand, the assumption of a spherical Fermi surface

is not strictly valid for those non-transition metals in which the Fermi

surface touches or almost touches the plane of energy discontinuity an&

for transition metals in which the interband transitions between the s-

and d-bands are most important. In the present theory, the calculations

for non-transition metals are carried out on the basis of a spherical

Fermi surface, while non-spherical Fermi surfaces have been used for all

transition metals. Therefore, it is expected that the results on non-

transition metals will not apply strictly to some multivalent metals.

The present work does not include detailed study of the optical

and electrical properties of alloys, and also of such other properties

of metals as thermoelectricity and magneto-resistive effects. Much has

yet to be learned theoretically about the dc electrical properties be-

fore it is possible to study rigorously the optical and infrared dis-

persion properties of alloys.

An attempt has been made to make this thesis self-contained, but,

in view of all the relevant work yet to be done in the field of interest,

this was impossible. Similarly, an honest effort to give all due credit

was made, but it is likely that some work has not been properly cited,

such omissions were not intentional.

SECTION II. FUNDAMENTAL RELATIONS BETWEEN OPTICAL AND ELECTRICAL

PROPERTIES OF METALS

A. MAXWELL'S EQUATIONS AND KRAMERS-KRONIG RELATIONS

Maxwell's theory of electromagnetism provides us with a set of the

most fundamental relations between the optical properties and the elec-

trical properties of metals. These relations, plus the well-known Kramer's

Kronig relations between the real and imaginary parts of the complex

polarizability, constitute a foundation upon which the interpretation of

the optical and infrared behavior of metals in terms of electrical proper-

ties is based.

If E and H are the electric and magnetic fields represented as

functions of the coordinate r and time t for a given angular frequency:

= 2_v sec -i (32)

Maxwell's equations for an uncharged conductor are given in cgs units by
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V x H = -- + E (33)-- C bt c --

V XE= _ b_H
-- c bT (34)

V • El = V. H = 0 (35)

where e(_) is the real dielectric constant, o(_) is the conductivity,

and p is the permeability.

At optical and infrared frequencies, p = 1 for all substances.

The magnetic field H i_ eliminated by combining Equations (33) and (34)

and we obtain:

_ZE + 4_o bE
ceve E = e bt 2 b-_-- (36)

The solution to this differential equation is given by the typical

solution to the usual wave equation:

1

E = E ei_t £ i(eu e - i4_ow)-2z/c (37)
-- --0

where E is the maximum amplitude (i.e., at z = 0, t=0) and z measures
--O

the penetration distance into the metal. Equation (37) takes on the

conventional form expressed in terms of the complex index of refraction

E = E e iu(t + _ _ )- c (38)
-- m O

i

if we identify N with [...]2w -1 of Equation (37):

where n and k represent the index of refraction and absorption coeffic-

ient, respectively.

The relation in Equation (39) immediately yields the following two

important relations between the electric properties o(_) and optical

constants (n,k):

c = ne - k2 (40)

O = nk_/2_ (41)
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These two relations will be referred to frequently.

The physical significance of c(_) for _> 0 becomesevident whenwe
calculate the rate of energy loss by computing the Poynting vector _:

S - c (E X H) (42)
-- 4_

and taking the time average of:

_S
-W _ z (43)

_z

where W is the Joule heat produced per unit time and per unit volume

within the conducting medium. Then, we obtain as the definition of

o(_):

o(_) W/ E2 (44)
= 2

which says that o is the fraction of the energy absorbed or dissipated
E2

per unit volume out of the energy density per unit volume -- of theZ '

electromagnetic field of frequency m. It is quite obvious then that

o(0), at m = O, should be the dc conductivity of the metal. It is a

popular pratice to introduce a complex dielectric constant, _, and

complex polarizability, _, such that:

= i + 4_ = Ne (45)

= _ - is' (46)

This is analogous to the similar relation for the real quantities:

c = I + 4_ = n2 - k2: _ = i (47)

Then, upon comparing Equations (45 and 46) with Equation (39),

we now have:

e = i + 4_ = ne ke (48)

_' =--_ = 2nk (49)
w

These two relations enable us to obtain (n, k) values upon knowing the

values of the dielectric constant e and conductivity o at a given fre-

quency, and, conversely, to obtain e and o values from known values of

n and k. In general, the observations in the optical and infrared part

of the spectrum are designed to measure the optical constants, (n,k), or
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other optical properties such as the reflectivity and emissivity
( = absorptivity for metals). Therefore, for the purpose of predicting
(n,k) values for a given frequency w and temperature T (°K) from a
knownset of values of the dc electric properties, e(0) and o(0), or
for the purpose of predicting the dc electric properties from measured
values of (n,k), we need to have a set of theoretical equations relating
_(_) and o(_) to the corresponding dc quantities, e(0) and o(0). Specifi-
cally, the frequency-and temperature-dependence of o(_) needs to be
specified.

Establishing the correct _- and T-dependenceof o and e constitutes
a major part of the theoretical work explaining the optical, infrared,
and the related electrical properties of metals. Fortunately, the solu-
tion to the theorectical problem is considerably simplified with the aid
of the Kramers-Kronig relation which represents an integral relation
between o(_) and e(m), or more properly, between the real and imaginary
parts of the complex polarizability as follows:

_z(_) = - ! F _'_'(_) de' (50)
J _v_-W2

O

With the help of Equation (49), this represents a relationship
between e{w) and o(_) given by:

oo

£
- P / d00' eo(oo') (51)

4_ _ " o (oo' a_wa)

Therefore, it is sufficient to specify the m - and T-dependence of either

o or e for establishing the complete _- and T-dependent structure of the

optical and electrical quantities that are involved in Equations (15)

and (16).

In a more general discussion of the Kramers-Kronig relation,

Equation (50) and (51) are equivalently represented in the form:

+oo

f Im_)_0' ) -IRe [N(t0) - i] = P d00 w' - 00

--O0

(52)

which may be recognized as the real part of the equation:

I I<='>-I
-O0

(53)



68

or in the limit of _--_O+:

q-oo

= i _ dw' _N(w')- i] (54)
e_i co' - (w + i_)

--OO

Equation (53), which is the most general representation of the

Kramers-Kronig relation, was observed by Kramers as a simple consequence

of Cauchy's theorem if we assume that N(_) is a function of a complex

variable w analytic in the upper half w-plane which approaches unity

at infinity. It was later shown by Kronig that the absence of poles of

N(w) in the upper half e-plane was both a necessary and sufficient con-

dition for the property that no signal may propagate through a medium

with index of refraction N(w) with a speed greater than that of light.

Sometimes, the optical properties of a medium are expressed in terms

of the forward scattering amplitude F(w) and the total scattering cross

section per scattering center Os(_) rather than in terms of (_,_) or

(n ,k) .

The equation which shows the relation between the complex forward

scattering amplitude _(w) and the complex index of refraction N(w) was

first offered by Lorentz, namely:

2 c2 (55)(_) - = n ' 2
O W

where n is the number of scattering centers per unit volume. The same
O

derivatlon leading to Equation (55) also yields the optical theorem:

os(w) = 4_c Im _ co J (56)

where o (w) is the total cross section in cm 2 per scatterer. The above

relatio_ also follows very simply upon noting that the intensity of a

"s.r_duced
wave propagating through a medium of refractive index, N(_),nl w)Z

] - oin a distance by a factor lexp _ _(_)z P and also by e

according to the definition of Os(W). Comparison of these two expressions

gives Equation (56).

Upon comparing Equations (55) and (56j with the relations (45) ~

(49), some useful relations follow..

We have, for instance:
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n(_) = ReNCw) = i +

2_n c2
o

w2 Re _(_)

k(_) = ImN(w) =

2

2_noC
Im F(w)

to _

n c
o o (_)

2_' S

e(w) = Re.N 2 = (i + 4_ )

[< 2_n°c2 _2 _e _n c2 >-_]= i + we Re _(_) - o Im'F(_)

(57)

(58)

(59)

Im.N 2 = _c__(_) : 4_

n c2 < I _ 2_nc2 -- _
Re. F ((0)

o m. F'(o0) i + we_o

(60)

where the real and imaginary parts of _(_) are related to each other

through Kramers-Kronig relation:

+oo

_'2(W'-W)

Im_')
eC0e e de' (61)

= _ _, (_,2._2)
o

In applying the relations (57) _ (60) to the infrared dispersion in

metals, we need only to remember that n is the effective number of
1 O

conduction electrons per cm s and that o (_) is the total scattering
s

cross section for the conduction electron - external photon interactions

including the absorption, emission, and the scattering in the ordinary
sense.

B. ABSORPTIVITY (EMISSIVITY) AND REFLECTIVITY

Various optical, infrared and electrical properties may be obtained

from measurements of the abserptivity, A, and reflectivity, R, as well
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as from n and k. The two quantities are related by the equation:

R = i - A (62)

The relationship between (R,A) and the electrical properties will
follow naturally from Equations (48) and (49), whenwe establish the
relationship between (R, A) and (n,k).

The optical theory gives the well-known result that for normal
incidence:

R = I N_+ _i 2 = i- A (60)
B

which defines the reflectivity and absorptivity in terms of the complex

index of refraction _ = n-ik. In particular, for a transparent medium

such as glass, we have _ = n, and Equation (63) gives the well-known

formula:

R = _ n-I _ (64)
n+l /

Equation (63) completely determines R and A in terms of n and k. In

order to express R and A in terms of o and c, it is convenient to

follow the simple algebraic method of Price (1949) rather than to use

Equations (48) and (49). Upon writing, for the comple_ p_larizability,

_4_] -I = ( x + iy) (65)

The absorptivity is given by:

A 2 = Ae

8R 8 (I-A)

i

= T + (T2 + y2)_ (66)

where:

T = x + x2 + y2

i e = l+ke-n e = x/x 2 + y2

w

= 2nk = -Y/x 2 + y2 (67)

and these are just as well represented in terms of the real and imaginary

parts of scattering amplitudes according to the relations (57) ~ (60)
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The frequency- and temperature-dependence of R and A will then be
determined when the _- and T-dependent structure of a or e is obtained
theoretically. The spectral and temperature variation of R and A will
vary depending on the choice of the particular theoretical model used
in calculating the complex polarizability. In particular, if we adopt
the classical free electron theory of Drude (1904, 1902), the real and
imaginary parts of the complex polarizability are given by:

( )2
X = - W_O

= - (_R)2 (68)Y

where:

to = / m* '
V 4_noe2 (69)

= the relaxation time of a conduction

electron

m _ = the effective mass of a conduction

electron

= the electronic charge

(= 4.8 x i0 -10
e. s.u)

n
o

= the effective number of conduction

electrons per unit volume

Price (1949) presents an extensive investigation on the qualitative

features of the spectral and temperature variations of variations of

A and R for metals to which one electron dispersion theory can be

applied in the form of Equation (57).

In general, the expressions for x and y will assume different forms

_or different theoretical models. A brief review on some of the most

popular theories On optical and infrared dispersion is presented in the

chapter that follows.

SECTION III. EXISTING THEORIES ON OPTICAL AND INFRARED DISPERSION

IN METALS

A. HAGEN-RUBENS THEORY

Theoretical discussions on the behavior of metallic conductors under

the influence of electromagnetic waves were first given by Hagen and
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Rubens (1903) and by Drude (1904) on the basis of classical electrody-
namics.

The Hagen-Rubenstheory is restricted in its applicability to the
long wavelength part of the spectrum where (_ R)2 is muchsmaller

than unity, _R being the relaxation time characteristic of the damping
in the electronic motion. The results of the Hagen-Rubenstheory follow
from Equations (40), (41), and (42) upon taking:

o(w) Z _ (0) = Cdc (70)

in the long wavelength part of the spectrum. Wethus have:

nk _ \_Odc/V_ (71)J

be sho_n that _o dc/_> is much larger than unity for the

%

It may
\ /

wavelengths for which the approximation (Equation 70) is valid, and

hence, approximately:

/ ,n.= k dc (72)

R= i -A _ i-2 I v '

Odc

(73)

where the latter expression is obtained upon substituting Equation (70)

into Equation (53). The formula (73), which is known as the Hagen-Rubens

relation, has been compared with the experiment for infrared radiation

and for various metals and temperatures (Hagen and Rubens, 1903), and

it is in general in fair agreement with the experiment for:

_ 10 _ (74)

The approximation represented by Equation (70) is equivalent to

taking the current _ in phase with the applied electric field E. This

will be true only if the relaxation time _R of the electron is small

compared with the period of the light wave so that the field acting on

the electron is approximately constant during the time taken by an

electron to traverse its mean free path. For wavelengths shorter than

~ i0 _, the current will be out of phase with the field, and it is

generally observed that the formulas in Equations (72), (73), and (71)

are not even approximately in agreement with the experiment.



73

B. DRUDETHEORY

A more general theory than that of Hagenand Rubenswas given by
Drude (1904) by obtaining the solutions to the classical equation of
motion for free conduction electrons subject to Mmxwell's electromagnetic
field.

In contrast to the Lorentz theory (Lorentz 1906) of absorption by
dielectrics, which rests on the assumption that bound charges become
polarized upon interaction with the electromagnetic wave, Drude (1902,
1904) suggested that consideration of the interaction between the free
conduction electrons in the metal and electromagnetic wave. The solution
for the conductivity, o(w), is obtained upon solving the equation:

--i_t (75)m* _ + m* f _ = -eE e-- o --o

--i_t
where s is the electron position coordinate within the metal, E = E e

is the applied electromagnetic field, and P is the damping coefficiento
which is also equal to the inverse of the dc relaxation time _R" Using
the effective mass, m*, in Equation (75) instead of the normal election mast
m which was used in the original Drude theory (1904), we have incorporated
the later developed effective massmethodwith the primitive free electron
theory of Drudeo

Equation (75) yields the expressions for the conductivity o(_) and
the dielectric constant c(_):

a(_) - nk_0 = _(0) . (76)

_ I + (_ R)e

-e(_ = I + k2- n2 =
4_ (0) ¢ R

I + (_ R)e

(77)

where we used the notations:

_R = F$I

n e2 /
0(0) - e

m* / Fo
(78)

We see that:

o(_) _ _(O) (79)
_--_0
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so that _(0) is the dc conductivity.

It can be sho_n readily that the relations in Equations (76) and
(77) reduce to the simple relations in Equations (71), (72), and (73)
of the Hagen-Rubenstheory in the limit:

(,__R )a << 1 (80)

On the other hand, the results of the Drude theory do not apply to

that part of the short wavelength region where the cont_ibutidn of the

bound electrons enter (i.e., the reasonance region) through the photo-

electric effects. At the shorter wavelengths, the anomalous dispersion

occurs due to the contributions of the photo-electric absorption, and

also the core polarization becomes important. In this part of the

spectrum, the simple free electron thory of Drude is not enough to explain

the observed dispersion, and will be modified, for the dielectric constant,

as follows:

4_ne ee

(c -i) = n 2 - k e -i = m* _2 + (c-l) c+ (c-i)p (81)

where (c I) is the contribution of the core polarization
C

and (5 - I) of the photoelectric absorption.
P

In general, the anomalous dispersion is observed at a wavelength

well below _i_. Ag, Au, and Cu, for instance, have their lowest reso-

nances at 0.27 _, 0.37 B, and 0.50 B (Meier, 1910), respectively. As long

as one stays at wavelengths which are long enough to be sufficiently

outside the resonance tail, the free electron theory of Drude should be

satisfactory. At the high frequency region where the condition:

(_ _R )2 >> I (82)

is satisfied, the free electron part of o(_) and c(_) are given by:

l

o(_) _ _(0)/(_ _ R)2 (83)

c-l_ - 4_nee/m*_2

The values of (c-l) are available for a variety of metals (Van

Vieck, 1959), and are generally independent of frequency (Mott and

Jones, 1936) The value of (c-l)_ may be found either by a direct

theoretical calculation, or empir_cally from the observed data of (n + k)

values. The photoelectric part (nk) of the observed (n,k) values is
P
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obtained empirically upon subtracting the free electron part (i.e., the

Drude part) from the observed (n+k) values making use of the relation

in Equation (83). Then, (c-l) is obtained, in turn, upon making use of

the Kramers-Kronig relation inPEquation (51):

(_--i) _p = _ (nk) co' d _e' (84)
P t0,2_ co_

For wavelengths sufficiently outside the photoelectric region,

(_-l)c and (c-l) are small enough to be neglected compared with the
P

free electron part. We shall be primarily interested in this part of

the spectrum where only the free conduction electrons play a dominant

role.

Equations (76) and (77) show that the two Drude equations are related

with each other by a rather simple algebraic relation:

_/i - c = (4_R)-± = Fo/4e = nkv/l + k2 - n a
(85)

This relation enables us to obtain the value of the dc damping coeffic-

ient, Fo, or the dc relaxation time, _R, when we have only one pair of

(n,k) values at an arbitrary frequency provided that tile frequency

is not too large.

A more exact way of determining the value of F ° would be to plot

_(_) against (l-c) from a set of (n*k) values, and then determine the

slope (_/4n) of the resulting straight line. This method was first pointed

out by Wolfe (1954, 1955). Any deviation of the curve from the Drude

straight line would also provide us with a measure of the validity of

the Drude theory at a given frequency.

Beattie and Conn (1955) plotted the Argand diagrams showing (2nk/X)

against (n2-k a) for AI Ag ni and Cu. The values of F and } determined
' ' o R

from the slopes vary greatly depending on the way the metal surfaces are

prepared. The best agreements of the dc conductivity values, Co, which

are obtained upon substituting the F ° values into the Drude Equation

(76), with the electrically measured values were obtained for evaporated

metal films. The results of Beattie and Conn are presented in Table VII.

The discrepancy between the measured and calculated (Drude Theory) values

of the dc conductivity for evaporated films of Ag, Cu, Ni and AI are

found as 40 percent, i00 percent, 40 ~ 50 percent and 40 percent respec-

tively. The calculated values are always smaller than the measured values.

These results wil'l be further discussed in a later section, and it will
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be shownthat the mentioned discrepancy can be explained theoretically
upon introducing an additional frequency-dependent factor into the
original Drude equation.

For none of the metals that were studied by Beattie and Conn (1955)
did the Argand diagrams yield complete straight lines. For AI, for
instance, the curve starts to deviate from the straight line at ~8_.
The deviation becomesmore pronounced toward the shorter wavelengths as
one might have expected. An interesting feature is that the Argand dia-
grams start to deviate from a straight line long before the wavelength
enters the photoelectric resonance tail.

With almost no exception, the dc conductivity, Oo, calculated
according to the Drude Theory from the observed values of optical con-
stants, is always smaller than the measuredvalue even whenvery care-
fully prepared metal surfaces are used. Thus, it seemsthat the classi-
cal free electron theory_of Drude contains somebasic limitations.

Of all the existing theories on the optical and infrared dispersion
in metals, the cllssical free electron theory of Drude (1904, 1902) has
been most successful in explaining the experimental results aside from
such exceptional cases that will be _iscussed later.

The Drude Theory has been applied to a large numberof metals with
varying degrees of success. An excellent review by Schulz (1957-a) and
the review by Blau, et al, (1958) gives a detailed account of this work
as well as references to manyof the original papers. The basis for the
relative success of the Drude Theory lies in the fact that, for a number
of metals for which sufficient data on (n+k) values are available,
Equations (76) and (77) can be fitted to the optically determined curves
of o(_) and O-e(_ upon adjusting F and o(O) or n and m* to suitableo e
values (Schulz, 1957-a,b,c, 1951, 1954; Beattie and Conn, 1955; Seitz
and Turnbull, 1958;and others)

For Au, Ag and Cu, which have their first resonances at 0.37_,
0.27_, and 0.5_, respectively (Meier, 1910), the Drude Equations (76)
and (77) can be fitted to the experimental curves with m* (Cu) = 1.45m,
and m* (Au) = m* (Ag) = m for X > 2 _ (Schulz, 1957-a). The optical
behavior of the three simple monovalent metals is clearly consistent
with the Drude theory at least so far as the Irequency dependenceis
concerned.

Another example of excellent agreement between theory and experi-
ment is found in the liquid metals Hg and Ga (Schulk, 1957-b). For
these metals, the theory fits well for X _ 0.3 _.
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TABLE V

Metal

AI

Ni

G X 10 -16 e.s.u.
o

(calculated)

11.6

(3
1.oz/

II

Od × i0 -16 e.s.u.
(measured)

15.0

°ii

cI

1.3

Except for the case of the liquid metals, the success of the Drude

theory mentioned;above is no more than a qualitative one. For the theory

to be quantitatively consistent, the values of the electric properties

such as _(0) and c(0), as well as other lattice parameters, must agree

with the measured values when calculated from the measured optical

constants. And conversely, the optical constants calculated from the

measured values of c(0) and c(0) should agree with the measured values

of the optical constants. However, in practically all cases that have

been studied, the dc conductivity values calculated from the best-fit

Drude curves are found to be smaller than the handbook values, for mono-

valent as well as multivalent metals. Such discrepancies occur sometimes

by a factor of 2 _ i0 (see, for instance, Seitz and Turnbull, 1958;

Beattie and Conn, 1955).

As it was shown by Beattie and Conn (1955), the dc conductivity

calculated according to the Drude theory from the measured values of

optical constants depends very strongly on the manner in which the metal

surface is prepared. The discrepancy was smallest, being of the order

of 40 ~ i00 percent_ for the case of evaporated metal films, while for

metals prepared in other ways the calculated dc conductivity values were

smaller than the handbook values by a large factor of 3 ~ 5. Although

the large discrepancies in the case where the surfaces are prepared by a

method other than by evaporation may be explained as arising from the

crystal structure of the metal surface being disturbed during the process

of polishing such as introducing an amorphous layer, the discrepancy

for the case of evaporated films is yet to be explained. The only cases

where both qualitative and quantitative agreements are found are the
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liquid metals Hg and Ga.

In general, the agreement between the theory and experiment for

solid, multivalent metals is more incomplete than for monovalent metals

such as gold, silver and copper. At best, a partial agreement over a

narrow spectral region can be obtained through suitable adjustment of

the parameters ne, m*, and o(O). This procedure for multivalent metal

is justified, as will be explained, when the contribution to o(_) and

e(_) of the one band is predominant over the second band contribution

in a certain range of the spectrum in the two-band description of the

free electron theory. In this range of the spectrum, the metal may be

treated effectively with the one-electron formula of Drude. By adjust-

ing n e and _(0), Hodgson (1955) was able to fit measured values of n and k

for the divalent metal Zn from 2 to 15 _. The value of n e was substan-

tially lower than that calculated, and the value of _(0) substantially

lower than that measured. For the trivalent metal AI, Hodgson (1955)

and Beattie (1955) could fit the Drude curves to the optical curves in

the spectral range of 1 _ I0 _, using suitably reduced values of n e

and o(O).

In spite of the good agreement found in the liquid metals Hg and Ga,

it was found (Schulz, 1957-c) that the ]_auid alloys Hg-In. Hg-TI, and

Ga-In are in complete disagreement with the theory. This is in _ontrast

to the earlier studies of _en_ (1919) w_icEl pointed out that som_ liquid

alloys follow the Drude theory. But these studies were confined to

very short wavelength range. Some of the early studies on the optical

properties of liquid metals (Kent, 1919), bismuth, lead, cadmium and tin,

in the spectral range of 0.40_ to 0.579g shows a remarkable agreement

with the Drude theory as shown in Table VII.

C. ELECTRON-LATTICE INTERACTION AND ANOMALOUS SKIN EFFECTS

In the original theory of Drude (1904), the viscous damping co-

efficient, Fo, was used without specified reference to the physical

mechanism giving rise to the damping. The introduction of Fo was

necessary in order to maintain a consistency between the electromagnetic

dispersion and the finite dc resistivity on the basis of the free electron

model. In this sense, the damping coefficient was used as a parameter

whose magnitude was to be determined either from the measured electrical

properties or from the measured optical data. Kronig (1927) reconsidered

the problem in the frame of the modern theory of metals, showing that

if the conduction electrons are treated as moving in a periodic potential

perturbed by the thermal agitation of the lattice, they can be held re-

sponsible for the optical properties in the infrared as well as for the

characteristic absorption and refraction in the visible and near ultra-

violet parts of the spectrum. In other words, Kronig attributed the
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TABLEVII. LOWTEMPERATUREABSORPTIVITYOFMETALS

Metals

Cu

A1

Ag

Hg

Ga

Zn

Sn

Ni

Ti

Pt

Ir

Total Absorptivity A

Present

Theory

0. 0048

0.008

0.0046

t
0. 030

t
0.037

0. 003

0.008

0.015

O.054

0.054

0. 093

Experiment

O. 0050

Biondi(1956)

O. 0044

Biondi (1956)

Bulk

Absorptivity

(A_ / A) %

40%

49%

20%

87%

87%

0.003

AB=

0. 008

86%

O. 054

94%

95%

Optical Data Used to

Calculate

A_ A s

Beattie Conn (1955)

Bor et al (1939)

Forsterling +

Freederickz (1913)

Golovashkin et al (1960)

Motulevich et al (1960)

Schulz (1951_ 1954)

Hodgson (1955)

Forsterling + Freederickz

(1913)

Schulz (1957)

Schulz (1957)

Hodgson (1955)

Hodgson (1955)

Beattie Conn (1955)

Hass Bradford (1957)

Forsterling Freederick

(1913)

Forsterling Freederick

(1913)

t These are the extrapolations from the liquid data, and are not

strictly valid for solids_ except_ perhaps_ in the order of magnitude.

* The skin absorptivity A not computed.
S
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occurrence of finite

action.

to the mechanism of the electron-lattice inter_
O

The mechanism of the electron-Lattice interaction or the electron-

phonon interaction as it is popularly interpreted in modern theory, and

of impurity scattering when the metal contains a substantial amount of

impurities, has shown enormous success in explaining various physical

qualities of metals such as the thermal and electric conduction, the

Wiedemann-Franz law, the Matthiessen rule, the dependence of the electric

resistance on temperature and pressure, and many others. (See, for in-

stance, Wilson, 1936; Mott and Jones, 1936)

The impurity scattering introduces a residual resistance (Restwider-

stand) and represents the temperature-independent, additive quantity of

resistivity in the Mmtthiessen rule. A further progress on the behavior

of metallic conductors under the influende of electromagnetic waves was

made by Reuter and Sondheimer (1948) and was later elaborated by Dingle

(1953), Gordon and Sondheimer (1953) and Pitaevski (1958). This work

concerns the phenomenon that is popularly referred to as the anomalous

skin effect and is important only at low temperatures.

Reuter and Sondheimer (1948), following a suggestion of London (1940),

investigated the case, important at low temperatures, that the mean free

path of the conduction electrons for collisions with the lattice is Qf

the same order of magnitude as, or even large, compared with the normal

penetration depth (skin depth) of the electromagnetic waves in the metal.

In this case, the way in which the metal boundary influences the motion

of the electrons arriving there becomes important. The authors distin-

guished two extreme cases: namely, that of the specular reflection at the

surface and that of completely diffuse reflection, the latter being at

least approximately realized in nature according to the available evidence.

Dingle (1952, 1953) added elaboration to the original theory of Reuter

and Sondheimer, and showed, in particular, that, especially in the case

of diffuse reflection, the values resulting for the absorptivity A(=I-R)

of the metallic surface may differ widely from the predictions of standard

theory. Qualitatively, this is to say that, in this case, the loss of

momentum parallel to the boundary, which an electron suffers when diffusly

reflected by it, furnishes a contribution to the real part of the surface

impedance of the metal. This contribution remains even if, by lowering

the temperature, the bulk resistivity and with it the energy loss in the

interior of the metal are reduced. Hence, the metal still retains a

non-zero absorptivity when the bulk resistivity is made to vanish by

lowering the temperature to O°K. This conclusion was qualitatively pre-

dicted by the experiments of Ramanathan (1952) at the liquid helium

temperature. The success of the theory of anomalous skin effect in

accounting for the reflectivity of metals has been conclusively demon-

strated by Dingle (1953) and Pitaevski (1958).
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In its present state of development, the theory of the anomalous
skin effect applies strictly to the alkali metals and monovalent metals
such as Au, Ag, and Cu. Like the simple Drude theory, the anomalous
skin effect does not apply in a region of §trong resonance absorption.
Table VII shows the values of the absorptivity, A:

A = A + A (86)
v s

for Cu and Ag, where A
s

is the diffuse skin absorptivity:

s 4
(87)

Vf being the Fermi velocity of electron and c the speed of light, and

A is the bulk contribution to the absorption resulting primarily from

t_e electron-phonon interactions. The values of A for Cu and Ag have
been obtained from the formula that will be derive_ in the calculations

of Section IV. It is seen in Table VIII that the bulk and skin effects

added together show agreements with the experimental values up to about

2 percent.

Associated with the skin effect is the skin depth which is the

thickness at the metal surface in which most of the optical skin effect

is observed, and is given by:

m,c 2 _ ½ (88)
5s = \ e2 i'

4_n 0

and is in the order of several thousand angstroms. This is not to be con-

fused with the so-called penetration depth 8 which is a distance charac-

teristic of the surface penetration by lightPof given wavelength and is

the distance at which the intensity falls to 1 of that at the surface.

It is given by:

5i = k (89)
4_k

where k is the absorption index. For sodium at k = 0.6_, k @ 2.6, and

81 is approximately 180 A. In gerneral, 81 is in the order of several

hundred angstroms• The expression of Equation (89) is reminiscent of

the similar expression for the penetration d_epth at radio frequencies:

8 = c = • k (90)

_4_Udc w' 2 v_.k
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where °dc is the dc electric conductivity. The two expressions are
essentially the sameas far as the qualitative estimations are concerned.

TABLEV"I, LIQUID METALS

Metal

Ne/at om
(calculated)

i/o
O

(_ ohm/cm)

calculated

i/Odc

(_ ohm/cm)

measured

Bi

5.1

128

134

94

98

Pb

5.1

Cd

2.4

33.4

34

Sn

4.1

54

52

Hg

2.1

87.3

94
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TABLE VIII LOW TEMPERATURE ABSORPTIVITY OF METALS

Metals

On

A1

Ag

Total Absorptivity A

Present Experiment

Theory

0.0048 0.0050

Biondi (1956)

0.008 ---

0.0046 O.OO44

Biondi (1956)

Bulk

i Absorptivity

i (A_/A) %

40%

49%

20%

Optical Data Used to

Calculate

A, A s

Beattie Conn (1955)

Bor et al (1939)

Forsterling & Freederickz

(1913)

Golovashkin et al (1960)

Motulevich et al (1960)

Schulz (1951, 1954)

Hodgson (1955)

Forsterling & Freederickz

(1913)

Hg 0.030 + --- 87°/° Schulz (1957)

Ga 0.037 + --- 87% Schulz (1957)

Zn A B .... AB= Hodgson (1955)

0.003 --- 0.003

Sn A= *
B AB= Hodgson (1955)

0.008 --- 0.008

Ni 0.015 86% Beattie Conn (1955)

B

0.054

O.O54

A _-

B

0.054

94%

95%

Ti

Pt

_r 0.093

Hass Bradford (1957)

Forster ling Freederick

(1913)

Fosterling Freederick

(1913)

+ These are the extrapolations from the liquid data, and are not strictly

valid for solids, except, perhaps, in the order of magnitude.

* The skin absorptivity A not computed.
S
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SECTION IV. QUANTUM MECHANICAL CALCULATION OF OPTICAL AND INFRARED

DISPERSION IN METALS

A. INTRODUCTION

All of the existing theories are based on the cormmon assumption

that Maxwell_s theory of electromagnetism is valid in the form that

was discussed in Section II, and any new theory which is based on the

same assumption should necessarily be formulated on the basic grounds

laid by the work that has been done in the past.

The classical dispersion equations are simply the solutions to

the equations of motion subject to Maxwell's electromagnetic field.

Therefore, as long as we confine ourselves to that part of the spectrum

where the free electrons are mostly responsible for the dispersion, it

is quite natural for us to expect that a new theory which is offered by

quantum mechanical calculations should necessarily be a "quantum

mechanical free electron theory" which can differ from the classical

free electron theory only in specification of the temperature depend-

ence and also of further frequency dependence if any, in the viscous

damping and polarizability, etc.

Various quantum mechanical dispersion equations should approach

the corresponding classical equations in the limit of low frequency

where _(w) approaches the value of o(0) of the static case. It is

hardly necessary to mention that some of the high-frequency effects,

such as the phenomenon of anomalous dispersion arising from the photo-

electric resonance of bound electrons and also of the small but important

contribution of the core polarization, can be explained rigorously only

with the aid of quantum mechanics.

Compared with an enormous amount of qualitative and quantitative

applications of quantum mechanics to the properties of metals under

the influence of static electric fields, very little progress is found

on the optical and infrared dispersive properties of metals beyond what

is available from the classical free electron theories and the anomalous

skin effects. The less said the better on similar considerations of

alloys. However, it is self evident that the noble features of quantum

mechanics revealed in the metallic properties under the influence of

static electric field provide an indispensable tool for examining the

optical and infrared dispersion properties of metals, because as we saw

in Section III, the two aspects of metallic properties are intimately

linked with each other. This was already qualitatively made use of in

the early studies of Mort (1934) and Mott and Jones (1936). Further,

much progress that has been made on the optical properties of semicon-

ductors can be extended to metallic conductors with suitable modifications

since, after all, the semiconductors and metallic conductors may be
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considered as differing from each other more in degree than in kind as
far as the respective conduction mechanismand properties are concerned.
The qualitative aspects of this feature were already discussed in the
early studies of Wilson (1936) and more recently in the work of Bardeen
and Shockley (1950).

Someof the considerations that enter in the quantum mechanical

calculations may be mentioned as:

(a) the Pauli exclusion principle;

(b) the Fermi-Dirac statistics;

(c) solid band structures;

(d) quantum mechanical interpretations of various interactions

that contribute to the viscous damping of conduction

electrons;

(e) the effect of core polarization;

(f) the effect of the bound electrons.

The calculations in the frame of the free electron theory involves con-

sidering explicitly all of the above except for the last two, in

addition to the fundamental relations available from Maxwell's theory

of electromagnetism considered in Section II. A qualitative discussion

on the effects related with (e) and (f) above was given in Section III,

and excellent discussions of these features, as to the mechanism and

effects, are presented by Van Vleck (1959) and Mott and Jones (1936)

on (e) and (f) above, respectively. A detailed discussion on these

points is outside the scope of the present work.

In the theoretical calculations that will follow, it is attempted

to find explicitly the w- and T- dependent structure of the damping

coefficient and, hence the polarizability _ and also the bulk absorp-

tivity A (w,T) in the framework of the free electron theory and with
V

the assumption of spherical Fermi surface. That very little error is

involved in assuming a spherical energy surface for most of the body-

cnetered, face-centered and hexagonal cubic lattices was pointed out

by Wilson (1936) and Mott and Jones (1936), and is shown in the follow-

ing qualitative expression for dc conductivity (Jones, 1956):

4_3h 2 BE _ki_k j

(d_k) (91)

(i, j = 1,2,3)
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where F(E) is the dimensionless electron distribution function at energy

E(K) and T(_) is the dc relaxation lifetime of an electron with momentum

(h_). Futhermore, even for a metal which, in a single crystal, has a

detectable degree of anisotropy, the spherical approximation of Fermi

surface works well for a polycrystalline sample. Some particular cases

of metals in which interband transitions make predominant contributions

to various electrical and optical properties and for which nonspherical

Fermi surface must be used, will be treated in the future section on

transition metals.

The results on transition metals should apply equally well to other

nontransition, multivalent metals when interband transitfons need to be

considered.

For metals to which spherical Fermi surface applies, effect of the

periodic lattice is incorporated entirely into the effective number of

electrons per unit volume and the effective mass. This is in accord

with the "effective mass method" which will be discussed in _ore detail

in the following paragraph of this section. Then, for a metal which is

free of impurities, the only perturbation to the electronic motion origi-

nating from the presence of lattice is the electron-phonon interaction or

the interaction between the "free" electrons and the thermal vibrations

of the lattice represented by a finite temperature-dependent distortion

of the lattice from the perfectly periodic potential of O°K. Such a

perturbation decreases rapidly as temperature is lowered to the absolute

zero. The metals with a substantial impurity content and alloys, espe-

cially the ones with a random lattice, are exceptions to this picture:

there is a finite, temperature-independent perturbation giving rise to

a non-zero resistivity at 0°K, the total resistivity being given by this

plus an additional temperature-dependent term (Mathiessen's rule),

(Mathiessen and Vogt, 1864).

The bulk absorptivity, A , the conductivity, o(w), as well as the

damping coefficient are calcuYated from the result on [_e rate of energy

expenditure _(_,T), which is related to _(_), according to the free elec-

tron theory by:

n W = E e _(00) (92)
e

2

where _(_) is in turn related to the damping coefficient through the

typical free electron dispersion equations, and where (E2/2) is the energy

density per unit volume of the electromagnetic radiation field.

Identification of the damping coefficient in the final expression

of W is straightforward when we compare the result with the corresponding

dc expression derived in Wilson's theory of metals (1936). Thus, the
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approach adopted in the present work differs from the usual method of

finding the damping coefficient directly by calculating the inverse of

transition lifetimes (relaxation time) from the transition matrix

elements.

TABLE VIII METALS WITH LARGE ANISOTROPY

Metals

Ga (Solid)

.Anisotropy

Max.

55.(5)

in dc resistivity

Min.

7.8 (5)

Ratio

1.32

Reference

Powe ii (1949)

Sckell (1930)Hg (Solid) 23.5 17.8

Sb 42.6 35.6 1.2 Bridgman (1925)

Cd 8.3 6.8 i.22 "

Te i.54xi05 5.6xi04 2.75 "

Zn 6.05 5.83 1.04 "

L ....

Bi 138 109 i.27 "

Powell, Nature 164, 153 (1949)

Sckell, Ann. Physik (5) 6, 932 (1930)

Bridgmmn, Proc. Amer. Acad. 60, 306 (1925)
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B. CALCULATIONALMETHODANDASSUMPTIONSONDAMPINGINTERACTIONS

It will be assumedthat the predominant contribution to the electron
damping comesfrom the electron-lattice interaction in cooperation with
the perturbing electromagnetic field. The contribution by electron-
electron collisions, which are important at very high frequencies and at
very low temperatures, will be combinedwith the results of the present
section using the formulas obtained by Gurzhy (1958). Further, when
metal contains a substantial amount of impurities, the effective damping
will be the sumof the contributions by electron-phonon processes, electron-
electron collisions and impurity scattering. The additional contribution
by impurity scattering is responsible for the temperature-independent
residual resistance in the Mmthiessen rule. In the present section,
calculations will be carried out for a pure metal. However, if the im-
purity effects need to be considered, a constant term is to be added to
the damping coefficient. This additive constant maybe calculated from
either an optical data (Golovashkin, et al, 1960) or from low temperature
measurementsof dc resistivity.

In this chapter, only those transitions which take place within a
single band in the lowest Brillouin zone will be considered: i.e., intra-
band transitions. The case where the interband transitions are involved
will be left to a future chapter on transition metals.

Oncewe adopt the Hamiltonian in a specific form, various transition
probabilities can be found by the usual quantummechanical methods. We
shall use the perturbation method similar to that was used by Wilson (1936)
and Holstein (1954). Then, the transitions which are responsible for the
dampingand dispersion are the second order processes in which an electron
initially at the momentumstate _i makesa transition to the final state
_2 upon a simultaneous absorptions or emissions of a phonon and a photon.

Wedefine:

(-+) _ --kl--_ke_P (+) -

as the probability per unit time for a conduction electron to make a

transition from the state _! to the final state _2 with simultaneous
photon and phonon emissions (+) and absorptions (-) when it is certain

that the k2 state is completely empty and k I state is completely filled
and where--the superscript (±) designates the phonon processes and the

subscript (±) the photon processes.

According to the Fermi-Dirac statistics, the probability that the

with the corresponding energy E (k) is filled at temperature T(°K) is

given by the Fermi function:
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f (E) = i (93)
I + e_(E-EF)

where E_ is the Fermi energy and _ is (KT)-I, K being the Boltzmann
constant. Then, the total probability per unit time of an electron
initially at the state _i to makea transition to any of the other empty
states by either one of the four processes designated by the superscript
and subscript (±) will be given by:

p (+) (Ee)] (_+) _ kl-->ke)
k2

(94)

where the factor 2 comes about because, according to the Pauli exclusion

principle, two electrons with opposite spins can occupy the state with

The appearance of __O-f(Ee_ embodies the Pauli exclusionsame and E(k).

principle.

In order to represent the gross manifestations of such microscopic

transition processes, we have to average the probability of Equation (94)

over all the initially occupied states according to the Fermi-Dirac

statistics. The resulting average value of probability (P) per unit time

will be in the form:

(s) 2 (s) i-_-k2 f (El) (95)

_kl

where r, s = (±).

Then, following Holstein (1954), the power expended by the electro-

magnetic radiation field is defined as:

I _ [ P (r)_. p (r)_= (_) _ (+) j (96)

r=(+-)

This implies simply that the net power expenditure is the total power
absorbed minus the amount which is emitted into the radiation field.

There is an analogy between Equation (96) and the corresponding statis-

tical mechanical formula of Wilson (1936).

The relation in Equation (96) is dependent on both the frequency

w and temperature T. A part of the temperature dependence comes from
the Fermi-Dirac statistics of the electron distribution and the other
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part comes from the Bose-Einstein statistics of the phonon distribution

(the thermal vibration of lattice) which enter in the Hamiltonian average

over the distribution of phonon states.

Once the T- and w-dependent expression for W is obtained various

dispersion formulas follow naturally. For instance, the high frequency

conductivity o(_) is given by:

n W - Ea o(w) (97)
e 2

Thus, it is evident that the main task of theoretical calculations is in

finding correct values of W or P

In general, the expression for W will vary depending on the partic-

ular physical model of the system, the methods of computation, and the

particular Hamiltonian that are adopted. According to the effective mass

method of Peckar "(1946), Slater (1949), Wannier (1937), and James (1949),

and to the theorems developed by Bardeen and Shockley (1950), the electrons

in the isotropic (cubic) lattice may be considered as free electrons of

effective mass m*, and when the lattice is distorted by a small amount

resulting in a small change in the potential:

V = 5 U = Ud(X) - U (x) (98)
p o --

the amplitude part of the electronic wavefunction A(_) satisfies the

SchrSdinger equation:

I _2 _f 2 + 5U _ A(x) = EA(x) (99)2m* _ -- --

where Uo(X) is the original undistorted periodic potential and Ud(X ) is
the distorted potential which depends on the strains e.. that are Tmparted

lj

to the lattice in distortion. If the lattice is not cubic, we must re-

_ 1 2_hy :place m* _"
/

_ 1 _7 + 1 _X--_--- +im* _ m_ _x!2 _ (i00)
1 2

where (Xl, m_, m_) are the three principal-axis coordinates, and

(m_ m* m_) are the three values of effective mass. The amplitude func-

tion,A(_), is a smoothly varying function which does not vary appreciably

over the unit cell: If A(_) does not meet this condition, the method of
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effective mass is inadequate without a considerable degree of refinement.
In general, wave funcEions of electrons in metals are rather flat except
in the middle of the atom (Mott and Jones, 1936), and the volume within
which the wave function is not flat is relatively small, so that the

/
charge density in the flat region is almost exactly _ e ,

where V

V 0 / o

is the atomic volume. This flatness of wave function is the reason why

the approximation of neglecting the periodic field (free electron approxi-

mation) gives good results for metals, and thus Equation (i00), should

work. According to Bardeen and Shockley (1950), the electron-lattice

potential V (_) may be taken in the form:
P

v (__)= g ::_(x) (i01)
P

where g is _ constant and (_) is the dilation. Neglecting the other

terms in the expansion of V (_) in powers of the strain c.. is equivalent
p lj

to neglecting the dependence of the effective mass on the strain. It was

shown that the next largest term in V (x) to that given in Equation (i01)
p --

is proportional to the square of momentum times the strain:

0 (k 2 × strain) (lo2)

and, for the usual order of magnitude of |42 involved in metals and for the

size of the strain in the thermal agitation of the lattice, this second

term can safely be neglected.

C. TRANSITION PROBABILITY CALCULATION

Following Bardeen and Shockley (1950) and Holstein (1954), the

Schr_dinger equation for a conduction electron interacting with the per-

turbing electromagnetic field, _, and the lattice vibration may be written

in the form:

_ _ 1 (_i._+ __e _A _2 _ + Vp (_)_ (103)
ih _ t 2m* \ c /

where V
P

given by:

(_) is interpreted as the electron-phonon interaction potential

u (r) --)

q,J

V (r) = g div u (r)
p

_q,j_j(q)e i [q.r-_, jt I + c.c.}

(104)
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J 20oVa, j )

where (aj* (_), aj (_) are the phononcreation and annihilation operators,

Oo is the massdensity, _,j is the phonon frequency:

= (105)
_!1,J E,j

and (@q,j) are the orthonormal basic vectors:

(_,j . _q, j) = 8..,j3 (106)

and g is a constant whose value is of the same order as the electronic

energy•

For an isotropic lattice, we have the simpler expression:

V (x)= ig I q _.2 4_2
P N"MVE

q P q

• E t/_)

_ ½ [ N_ _ e1(q'x " q (107)

7
-i(q.x - E t/4_)_

-4N(q) + l'e q J

where we have used the following notations:

M : Mass of the lattice

V : The sample volume

N : Phonon number density (per unit volume) = 0o
P M

: Phonon wave-vector (momentum/h)

E : Energy of a phonon at the state (_)
R

N(_) : The number of phonon states for E that are occupied,

and is according to Bose-Einstein statistics,
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I

N(q) - e_Eq -i

In practice, it is often possible to distinguish longitudinal and

transverse waves in a crystal and discard the latter because of the factor

(_j._) in Equation (104). This is what has been done in obtaining Equation

(107). This is also related to the approximation of taking E dependent

only on the magnitude q and using the simple Debye dispersion of phonons

when the accoustic branch of phonon spectrum makes predominant contri-

butions. When KT has a value comparable to the discrete quantum of upper

branches, the optical branch contributes significantly.

In the present work, the electromagnetic field will be treated purely

classically and we will use:

A(x) Q A(x)e -i_t A*
_ _ = _ _ + (x)e +iwt

J

= -i eE _ i(p.x-0Jt) -i(p.x-cot) \'2-_- e e .... (108)

where E is the electric amplitude vector which satisfies (E.p)=0 when we

chose A to meet the divergence condition (i_.A)=0. The Schrodiger Equation

(103) now becomes, upon neglecting the term quadratic in A:

i_5 _ = - _52 e_ A i2 + V '
" I= _ (109)_t 2m* va_ + im*c -- p,

In the absence of the perturbation by the electromagnetic field and the

lattice vibration, the stationary states of electrons are represented by

the wave functions:

i(_.x - Ekt/_ ) (ii0)
@k (_,t) = e

where:

E k = (_2ke/2m*) (Iii)

The perturbed wave function _ (_,t) may be expanded into a super-

position of the unperturbed, free electron states in the form:

_/(x,t) =Z B(k) _k (x,t)

k

(ll2)
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where B(_) is the expansion coefficient with an explicit time dependence.

By substituting Equation (112) into (109), the equation of motion for

B_) is obtained as:

_B(k) _ e_ (_,_) FB(k_i) e i(E k- Ek-e-_)t/_
i_ _t-- 2im*_ L - -

- B (k+p) e i (Ek- Ek+p+ _) t/_] (113)

+ ig&__$_ A m
2N MVE

q P q

[ E_ -E )t/_
_½ B(k-q)_ ei(Ek" _m-q q

/

_B(k+_)_N(_)+l, ei(Ek - E_+ + E ) t/_]lj

In the absence of the lattice vibration we would have only the first term

E---] in Equation (113) arising solely from the electromagnetic field. In

this case, the coefficient B(_) cannot be made to increase indefinitely

with time because the energy terms:

E_ - E_+_ ± _ (114)

in the exponents cannot be made to vanish. In the language of perturbation

theory, the transitions are at most virtual and this corresponds to the

fact that a photon cannot be absorbed or emitted by a free electron.

Therefore, the electromagnetic perturbation alone cannot explain the damp-

ing in optical dispersion (Heitler, 1957). Following the usual procedure

of the perturbation method, we write

B(k) = 5 (k,k o) + B (I) (k) + B (2) (k) + ...
(i15)

where B (i)' B (2)''' are the first order, second order, ... terms for

an electron which was certain to be at the state k initially. The
--O

electromagnetic and the lattice vibration terms will be considered as the

first order perturbations in Equation (109). Then B(I ) in Equation (115)

will contain only those terms which are in the first power of E and g as

well as those quadratic in each of _ and g. The combined action of the

electromagnetic field and the lattice vibration is described by that term

of B which is bilinear in E and g, and we will need only this part of
(2)

B(2 ) for our dispersion calculations.
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In order to calculate B(2), we need to obtain B(I ) first. By
substituting Equation (115) into (113) and collecting the terms which
are of the first order in E and q, and integrating in time from 0 to t,

we obtain the following:

I _" E -_w)t/_-I
e i (Ek- k-p _

B(I )(k) = ie45_.E) 5(k o,k-p) - _
2m*w - Ek- Ek_ p- he /

2N MVE
q P q

E,+ + _0) t/_
- 5(ko,k+p) ei(Ek - _K p -i

- - Ek- Ek+p+ he "/

-- -- Ek- %_q- Eq

- 5(_ko,k+q) _N(q)+l' ei(Ek - Ek+q+ Eq) t/2_-i /_]}
Ek- mk+ q + mq

Using Equation (116) in (113), and collecting only those terms which

are bilinear in E and g, we obtain:

= \ 2m*w h N (q) +I(k±q+P) _2NpMV_ ½ "_____FL__J ½B(2)

[_ k + q k h ei_t/45-1 (117)
E -- + --

-- Ek+ q- Ek + Eq Ek+_p- Ek+ hto/

i_' t/__l _ k it" t/45 .](k + q) X e -- e -I

(E_k_+_1-Ek+ Eq _' (Ek± p- Ek_ + /4_0) _" J

where k is now written in place of k_o, and:

= Ek+ q- Ek +_0 + E

_' = Ek+qi p- Ek+q+ 4oo (118)
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_" = Ek+q+ p- Ek+p_ Eq

The probability per unit time, P(_ _±i±_), for the electron to make a

transition from _ to (k±_±_) under the combined action of the electro-

magnetic and acoustical fields is given by the absolute square of B(2 )

divided by time,

P_ k±_+_) = IB(2) (k+q+P) I_

: t ___>oo

(119)

A significant contribution to Equation (119) comes from those situ-

ations where one of the energy denominators contained in Equation (117)

becomes zero. Only in such cases does the transition probability per

unit time approach a constant nonvanishing value for a large t. The zeros

of the energy denominators may be grouped into two categories: those which

involve a coincidence of initial and final energies inclusive of the

photon energy _w and phonon energy E , and those which arise from an

energy coincidence of an intermediate state with either the initial or

final state. The two terms of Equation (117) which contain _' and _"

will not contribute to the over-all transition probability, since they
cancel out in calculations of the energy expenditure. It is easily shown

that:

On the other hand, the zero, _"=0, is physically possible and the reso-

nance factor containing _" gives rise to 8(_") in the expression for the

transition probability. However, the terms with _' and _" contribute

equally to both absorption and emission processes of photons, and the

over-all contribution from these terms to the net absorption, which is
obtained from:

(+) ;

cancel out. Therefore, we only need to evaluate the transition probab-

ility at the singularity _=0.

Equation (117) may then be replaced by equation:

B(2) (k,-+q±P) = q 2N MVE N(q)+l' 2m*m
P q (122)
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k + q + k _ ei(Ek+q+p-E_k_ E Ta_w)t/_
_- _ q -i

× E. Ek+q_Ek+ E E -E T _ ...._- _ q k+p k ' Ek__+q+_p-Ek+_ _ T Eq

Let us consider the transitions _-+ (k+_+_) first.

We notice that:

_Ek+ q -E k - Eq._ + _ Ek+ p - Ek - hc0_=

(123)

k+p - Ek - E_k+q+p Ek- -_ _ _ 0

of the form \_Ek+l" Ek _ represent the (v/C) corrections,The quantities

and will be ignored. Furthermore, _ may be taken equal to zero in

Equation (123); a deviation from zero need be considered only in the last

factor of Equation (122) representing the resonance factor.

Equation (122) is then replaced by:

B(2 ) (k+q+p) = q 2N MVE
p q 1 2m'c0

_'_ ei_t/_- i (124)
× X

he + E_- Ek+_

for the transition, k k+_+_.

The transition probability P (_--+k+_÷i) may be evaluated readily

from Equation (125) upon taking:

k+p- Ek - _ $ - _ (125)

and following the popular practice (Heitler, 1957):
t

f i_t' /jLim _ i -i e5
(_) =t--_oo a_ t _ o

Lim _ i

t -_oo 2_ t
i_t/_ -i

(126)
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Wethus have:

P (k-_k+q+p) = _ge N (_)ee45Sq2 (E._)e

4N MVE m*2_ 2 (_)2
P

8(_) (127)

Upon introducing the final state momentum, k2, as (_+_+_) and de-

noting the initial state _ as _i, and noting also that the argument, _,

of the delta function, 8(_), represents the absorption of a phonon and

and a photon of energy_ and E respectively, we may rewrite (127) into
the form: q

e(($)j (kl__k2) _ _qaN(q)eeg2 (E . _)e 5(E2- El- E4-_) (128)
- 4N MVE m*2_ 4

P q

where the superscript (-) refers to the phonon absorption and the sub-

script (-) to the photon absorption.

From now on, the photon momentum, _, will be neglected for the

reason stated previously, and represent the final momentum, _2, as:

ke = kl +- q (129)

Then, Equation (128) may readily be generalized to include the

emissions (+) of phonons and photons as well, and we have the general

formula:

P(_) (ki-_k) = ee(E'q) e4Vn*e_4
G(+-)(q) 5(E2- E1 + F + 4_0)

q
(130)

where:

_N(_) +iG (±) (_)= g_q2g2 N(N)

NME /
P

(131)

which are proportional to the probabilities of absorption (-) and emission

(+) of phonons without scattering (Wilson, 1936; Born and Huang, 1956).

Next we evaluate <_ (r)_
r(s) 2 (r,s=_ from the relations in Equations

(94) and (95). Substitution of Equation (130) into (94) gives us:

P" _'r)(kl) =I ea (E'q)at ) -- 2Vm*_04

ke

G(r)(q) [l-f(E2) _ 5(Ee- El+ rE + s4%0)
q

(132)
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The summationover the final momentumstates k2 maybe replaced by
corresponding momentumintegral,

dk2 =

V
(2_i) 3

_;/ (dk-2) ...

k22 dk2 d g2

dE2

Igrad E21 %2 %2 k22d (1331

In virtue of the relation, q=±(_2-_l), the summation over _2 is equiva-

lent to summation over the phonon momentum _ and also to replacing the

summation by the corresponding integral in momentum space:

___ V (dq) ...

q

(1341

At the same time, it is expedient to average over the direction of

electric field with respect to 3"

One thus obtains:

_r o j, +iP,(r)(kl) = ceE 2 q4dq dN G (r) (q) [l-f(E2)] (1351

S) -- 4 S _ 3m_'¢2_4
0 -1

× 5(_2q 2 +7/I 2 klq_+ rE+ s45w)
2m* m* q

where we have taken (_ • _)2 = ! qeE2 and _=cos e, @ being the angle

between the momenta, _i and _, a_d Ee= E2(_I ± R).

The integral over q extends from o to the maximum value qo where

qo is determined from the Debye temperature ® and the longitudinal phase

velocity of sound uL by the relation:

_uLq ° = K ® (136)

where K is the Boltzmann constant. It is also determined equivalently
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from the phonon numberdensity N per unit volume:
P

N = 4_ i s o3/ (137)
P 3 (2 _)s qo = q /6_e

Here we have assumed the simple Debye dispersion of phonons. This

approximation is known to be satisfactory at ordinary temperatures, such

as in heat capacity calculations. The shortcomings of the Debye model

of lattice appear mostly at very high temperatures where the average

momentum transfer in electronic processes in considerably larger than

the Debye cut-off value, and also at very low temperatures. More complete

formulation of phonon dispersion is available; see, for instance, Leighton

(1948) on monovalent metals and Bardeen (1937) for a more rigorous form

of electron-phonon interaction involving the Umklapp processes important

at very high temperatures. The work of Leighton (1948) shows that a more

general treatment than Debye's model of the lattice dispersion leads to

formulas which are essentially the same as those obtained from the Debye

theory, except at very high temperatures. The difference is that the

Debye temperature @ is no more a constant but contains a small tempera-

ture-dependence. The deviation of ® from the value determined from

room temperature measurement of heat capacity, for instance, becomes more

enhanced at lower temperatures. The temperature-dependence in ® has also

been discussed by Wilson (1936).

In general, the usual Debye temperature value ®o (notation used by

Wilson) are in the same order of magnitude. It is expected, therefore,

that, as long as the Debye cutoff is used as a parameter which is to be

adjusted within a small margin in the neighborhood of its room temperature

value, the Debye theory is satisfactory in the present formulation.

Furthermore, it will be shown that various optical and infrared dispersion

properties are not very sensitive to a small variation in ®,

The delta function in Equation (135) is eliminated by integrating

over _ from (-1) to (+i). The existence of a real _ such that the argu-

ment of the delta function vanishes for all q between zero and q , has
Q

been asserted by Wilson (1936) in his calculations of dc conductlvity.

That the same can be asserted in the present work involving an electro-

magnetic field is shown in the appendix thus.

p(_)(kit._ = eaEe P_lqo qSdq G (r) (q) [l-f(E1- rEq- s_] (138)

24_2m*to4hekl o

In obtaining Equations (135) and (138), it has been assumed that

N(q), E and hence G tr) (q) depend only on the magnitude q and not on the



102

angular variables. The only part of Equation (132) where the dependence

on the azymuthal angle appears was in (E.q) 2 with _i as the polar axis.

The argument of f(---) in Equation (138) results from satisfying the delta

function after integration over _. Calculation of (p((r)_s) " proceeds by

multiplying Equation (138) Fermi function f(El) and summing it up over

the initial momentum state _i, and dividing the entire expression by

the normalization:

L
el

f(Ei) (139)

In these calculations, we shall assume that the Fermi energy Ef

obeys the condition:

E f >> _c0, KT (140)

Thus, it is equivalently assumed that, for the frequency range that

is of interest, most of the transitions take place in the neighborhood

of the Fermi level and P (r) (kl)F(Ei) differs from zero only in the
' (s) -

neighborhood of El _ Ef. With these assumptions being considered, the

density-of-states factor _ may be taken out of the integral set equal

to _f. Then, we obtain:

X f(Ei) P (r) (kl)
.... (s) -

k_ k_

qo G(r) (r)eeE 2 q3dq (q)F(s) (q)

i_-_2m*_4_2ko E f o

where (r) is the integral:
F(s ) (q)

_- oo

f z(r) e I
Fts_ / (q)= I dz l+e z l+e z*a

- CO

(141)

(142)

z = _(El - Ef - rE - s_w)
q

a = _(rE + s_)
q
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The integral F (r)(q) can be evaluated exactly, and we have:
(s)

F(s)(r)(q)= (req+ s_w)/leB(rEq + sh_0)_I]_ (143)
/

The power expenditure W(_) which was defined in Equation (96), can be

evaluated using Equations (141) and (143) and:

_u_q = E = _w (144)
L q q

along with the Relations (136) and (137), and it is in the form:

qo
e2E 2

W (_) =I 16_2m"_WSkoEf $

r= + o

We substitute G

q3dqG(r)IF((_). F (r)]- (+) j

(r)
of Equation (131) into (145) and use:

(145)

N(q) = i e _Eq -i (146)

In order to obtain the power expenditure per unit volume, it is

expedient to introduce the effective number of electrons per unit volume,

n . After some algebraic manipulations, we finally obtain:
e

n e 2

e _ T_ 5 E 2 Z(w,r) (147)n
\e - m* R ® / 2w_

where R is constant given by:

R = _2 6292Np_ 2m*E_)½ MK G
(148)

and Z(_,T) is a function of both _ and T given by:

J(_,_) - e_sin4i(_) _T5(_,c_ ) - (e_-l) 2

-2 (eP-l)2 _ K4 (V,c_)_

eeP_l 3

J_(_,_)

(149)



104

KT / T

cg

Jn(_'_) = f yndy/(eY- e_) (e_ - e-Y)

o

(150)

K
n

cg

(_,c_) =,f yndy/(eY- e_) (e_- e -Y) (eY- I)

o

This is the basis relation from which important dispersion relations will

be obtained in the succeeding parts of this chapter.

A close examination of the relations in Equations (149).and (150)

reveals that z (_,_) approaches values which are independent of _ and

hence w in the limit of _ >> _ and also when _-_bO. In particular, when

_-_O, we have:

z(_,=) ~ Js° (_) (151)

where:
o_

Js°(cO = ysdy/(e Y- i) (i- e-Y) = Js(_,_) _=0

O

(152)

This is identified with Wilson's Js , and, more important, with
0.

Gr_neisen's formula (Gr_neisen, 1933) for temperature-dependence of dc

resistivity when we multiply by c_-s.

The u-dependent quantity Z(_,_) has no precedence in the classical

theories and hence constitutes an important consequence of the present

theory.

For the coming discussions on dispersion properties, it is conven-

ient to define the quantity b (_,_), the subscript ep signifying the
ep

electron-phonon processes, such that:

Z(_,_) = I Z(G,_) (153)

bep(_'_) = Z(O,_) Js°(_)

The numerical values of b (_,_) can be obtained when we evaluate the
ep

values of Jn(G,_)__ and K (g,_) for arbitrary values of _ and T. The dcn

quantities Jn°(=)_ and K o(_) have been discussed in many references andn
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are available in calculable forms. All types of integrals which enter

in evaluation of b (_,co) are discussed in the appendix, and the re-
ep

sults are given as follows (for n > 0):

i n [I in-m<n',m+lJn(b'co) = eek_l b 'm+l m eco-b_ ]
m:0

+ ('i) n-m+i ((_+_)m+i -(-i) m+i

co+b i (eb+ -i n)e

m+ i

eb-i

jo (c0-b) + (-i) n-m+i jo (c0+b)
+ m+ i m+ i

K (p.,co) =
n

(_l)m+2 jo (V) (i + -i
m-l-i

i i_/__

(ee_-l) (eb-i 0 m+i

n+ I) ] (154)

n-m Qm_ [eb _l)n-m I m+l]
b _ ( (V+co)m+ i. -__--

...._ e_+co- I e _- 1 •

eb(_l)n-m F o (co+_) jo+ Jm+ 1 m+ iL
(b)] + (co_v)m+l _(-l)m+i Dm+i

J eco-_ 1 e-b_1

I (-i) m+i J:+i(b)] (m+l)e_(-l) n-m _ (co+b;V)jo (co-b) + - m+ m+ i

- (m+l) _m(co-_;-b - (l+e_)n+l C_eC__l (l+eb)n+l ' jon+l (

- (l+eg) [_m (CO;O) (155)

where J:+i(x)_ is the same as what was defined in Equation (152) with the

only difference that the upper limit co in Equation (152) is to be replaced

by x, and:
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a

_n (a;b) =f yndye-Y (155)

b

Numerical evaluation of the dc quantities{J_ (x)}is considerably

simplified in the limiting cases, x << 1 (high temperature) and x >> 1

(low temperature).

For x << I, we have:

x (157)

f (yn-2 n_ 1
o n-2 --Z.-- n n-i ----7--- x x...

J (x) _ - T_Y 12 Y + ...) dy - x 12(n+l
m n-i

O

and for x >> i:

? Ijo (x) _ jo (_) = n y dy i

n n eY_l = n: r-_--
O

r= i

(158)

(e.g. jo (_) = 124.4)
5

D. CALCULATION OF ELECTRON-PHONON DAMPING COEFFICIENT

The damping coefficient which is contributed by the electron-phonon

processes or the electron-phonon collision frequency as it is often called,

can be obtained in a straightforward way when we compare the expression

for (W> obtained in paragraph-C with the corresponding, well-known high-

frequency dispersion formula which is obtained by solving Drude's equation

of motion for a free conduction electron.

It is well known that the power expenditure <W_ for a free electron

system is related to the optical conductivity o(_) by the relation:

EeG(w) = n <W> (159)
e

2

where <W_ is the power expenditure due to one electron per unit time and

E e is the energy density of the electromagnetic field. Upon comparing

_quation (159) with the expression for <W_ in Paragraph C, we obtain the

relation:

o (_) :i _o 2 R i Z(_,_) (160)
ep

ep 4_ c_a _
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where R is a constant independent of temperature and frequency which
ep

is determined by the properties of the lattice, and:

/ n e 2 i

_ = <4_ e _ (161)
o m*

/

where w is the frequency characteristic of the electron plasma oscilla-
O

tion. _ is generally outside the high-frequency limit of the free-
O

electron disperslon spectrum.

At ordinary temperatures, most of the e-dependence in Equation (160)

appears through ma in the denominator as in the case with the high-

frequency conductivity of Drude. Z(V,_) represents a relatively small

variation for changes in w. According to Equation (151), we have

Z(_,_) ~ jo (_) when _ = O. The last three factors in Equation (160) re-

produce t_e well-known GrGneisen formula. It also reproduces the dc

damping coefficient derived by Wilson (1936) when we identify our g and

N with Wilson's C and _-i in the expression for R given by:
p ep

S _2 N g2
R -_ P (162)

ep - 2 _MKe

Thus, by making use of the relation:

bep(_,_ ) = Z(_,_) ~ i (163)

jo (_) _-_o

it is natural for us to identify the last three factors in Equation (160)

as a damping coefficient, Fep(_,_), similar to its dc equivalent F°ep:

O

i jo )_) (164)
FeP (_) = Rep _5

such that

o (e) (_,e) (165)
Fep (D'_) =Fep bep

and

F ep (g'_) _-_o Fep(_) (166)

In this respect, b (_,_) shall be named the quantum correction
ep
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factor such that:

_iFe p = Fep ° (bep-i) > 0 (167)

represents the correction for w > O.

For the sake of convenience in future applications, we write down

b (_,_) explicitly:
ep

(e_i-I)a

bep (la,c_): I.-5_T°""J(cJ_-z e sin h LlJs(la' )- la e2__l) J4([a,cc)

(e_-l) 2 ]
- 2_ K4(_,_)I

(ee_-l) ]
(168)

The optical conductivity o(_) in the form of Equation (160) applies

only at _2 >>_p. A more general form is obtained when (_e + Pep2) is

substituted for _a in the denominator to make it consistent with the

dc properties. We thus have:

o b (_, -- ' + _ _ b 2 (B,o_)
Oep(k,c_ ) = 1 Fe p ep o ...... _o ," ep4_ ....

which gives us the familiar expression f_r the dc conductivity:

(169)

_e ne e
1 o e 1

Oep (c_) = _ FeOp(.c_) - m* p Op(C_)
(170)

when _ is equated to zero.

A quantity which has essentially the same physical significance as

the present b (_,_) has also been obtained by Gurzhi (1958), and is

given by: ep

ob

2 1 _ v4 e_.___l + v-_ v+¢ (k,c0 - _ _ dv eV_p_ i eV+__ i (171)

o

_ I when _ << _ <<i. However, Gurzhi's formula fails to reproduce the

correct temperature dependence for dc resistivity and hence for heat

capacity in the limit _0 for arbitrary values of _. It agrees identi-

cally with the result of the present theory when M >> _. Gr_neisen's
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formula for resistivity is compared with a heat capacity curve in FIGURE

15, and a good agreement is clearly shown.

A correct theory must be able to reproduce the timetested classical

formulas, be they dc properties or optical properties in the classical

limit, and the correction factor, such as b in the present theory,
ep

must approach unity identically when _-->O.

E. CORRECTIONS DUE TO ELECTRON-ELECTRON COLLISIONS AND IMPURITY

SCATTERING

Contributions to infrared absorption by the processes of electron-

electron collisions and impurity scattering have been investigated re-

cently by various authors. Some of the new developments are to be found

in the works of the Russian authors, Silin (1958), Pitaevskii (1958) and

Gurzhi (1959). Their calculations are based on Landau's theory of Fermi

liquids (1957). A metal which is commonly considered to be free of

impurities in the order of 10 -4 or less. For such a metal, the impurity

contributions can be safely neglected except at very low temperatures.

It is well known that even a small impurity content makes an important

contribution to the dc resistivity at very low temperatures through the

'Restwiderstand" of Mathiessen. As for the impurity contributions to

various infrared dispersion properties, the investigations in a following

chapter revealed that, even at very low temperatureS, the impurity con-

tributions can be negligible compared with the contributions by Holstein's

mechanism of bulk electron-phonon processes. This is in contrast to

common expectations based on our observations of dc properties. It

results from the important feature of the present theory that the

frequency-dependent damping coefficient, Fep(_,_), retains a large value

even at very low temperatures when _ >> _. On the other hand, for an

which does not satisfy _ >> _, Fep , at O°K, decreases rapidly with in-

crease in wavelength, and thus the impurity and electron-electron collis-

ions become important.

Similar conclusions are reached for the electron-electron processes.

It will be shown that the electron-electron collisions are insignificant

throughout the free electron spectrum, not only at ordinary temperatures,

but also at very low temperatures for many metals. Theoretically, the

electron-electron processes make more contributions at higher frequencies

and at lower temperatures. Except for transition metals and some multi-

valent metals, the correction amounts to a small fraction of the contri-

bution by electron-phonon processes in the high frequency region of the

free electron spectrum.

Thus, the above conclusions on the significance of the two processes
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are not in exact agreement with the suggestions by Silin (1958), Pitaevskii

(1958), and Gurzhi (1959). '_hey suggest that these two processes may be

the only predominant contributions for most cases at low temperatures

and in the near infrared, and may be important at room temperature as

well for some metals.

For our investigations on the relative magnitudes of the contribut-

ions by the three processes, we shall use Gurzhi s formula for the elec-

tron-electron collision frequency:

o (_) (_) (172)Fee(_,_) = Fee bee

b (_) = 1 +
ee

(173)

I_ o (_) is the dc damping coefficient and is well known to be propor-
ee

tional to _ T 2.

We may write it in the form:

1
Fee (c0 = Ree _ (174)

O

R being a constant having the same dimension as F . The frequency-
ee ee

dependent factor given by Equation (173) may be considered as a quantum

correction factor in the same sense that b (_,_) has been treated as the
ep

quantum correction factor for the electron-phonon collision frequency.

As for the impurity damping, or the electron-impurity scattering

frequency as it is often called, it is sufficient to remember that it

constitutes a constant, additive quantity, f oM' to the over-all damping

coefficient, f (_,_), and is independent of both frequency and tempera-

ture (or nearly so). Thus, the over-all damping coefficient, with all

of its quantum corrections taken into account, now takes the form:

O

r (_,cO = Fep(_,_) +Fee (_,_) +fM

O

= F (cg) b (_,c_)

b(_,_) =

f ° (c_)b +F ° b + f o
Mep ep ee ee

+F o +P MF Op ee

(175)

(176)
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This is to be used in various dispersion relations where the damp-

ing coefficient appears. For tile reasons that have been explained in

most cases it will be satisfactory to consider only the electron-phonon

term F (_,_). For example,F alone yields values of low temperature
ep ep

absorptivity of copper and silver at 4.2°K and k _ 1 _ 1.5_ in excellent

agreement with the observed values (up to _ 2 percent). On the other

hand, it is expected that F (_i,_) will not be sufficient to explain
ep

the observed properties of those transition and multivalent metals in

which the interband transitions involve a non-zero momentum transfer.

Those scattering processes which involve a momentum transfer I_ - _ ;

b _

smaller than a certain non-zero minimum do not lead to interban_ itrans-

itions.

Finally, it may be noted that the significance of the electron-

electron collision term, F o is directly related to the presence of the
ee

Umklapp processes. In fact, it has been pointed out (Gurzhi, 1959) that

the electron-electron collision term vanishes if the Umklapp process is

not present. The relative importance of the Umklapp processes at low

temperatures, as compared with the usual phonon mediated processes may

be understood in the following manner. Consider that the average momen-

T \,andtum transfer in electron-phonon processes decreases like - _

the density of phonons also decreases rapidly with decrease in the

average momentum transfer. The result of these is the rapid decrease of

resistivity, _T 5, as T is decreased to 0°K, while the electron-electron

collisions, activated by the Umklapp processes, have the_well-known _T 2-

dependence in resistivity. This should, therefore, be even more true

in those transition and other multivalent metals in which the interband

transitions are very important. A non-zero lower limit in momentum trans-

fer is present for such transitions.

On the other hand, except for the latter special cases, the above

statement is not necessarily valid in that range of the optical or

infrared spectrum where the quantum correction factor for electron-phonon

processes increases sufficiently fast with decrease in temperature to

_ o For instance for metals,
compensate for decrease in the dc quantity l ep.

be they monovalent, multivalent, or transition metals, which involve no

non-zero lower limit in momentum transfer, the quantum correction shows

the temperature-dependence to be _ T-I while Fep(_) decreases as _ T _

when _t,_ >> _ >> KT, thus compensating each other exactly. This is an

important consequence of the present theory.
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F. CALCULATION OF c(_,c_)

In Paragraph D, we have taken o(D,_) in the form:

2

6o F
0

c- 4_ 6o2 + F2 (169)

whereF 2 in the denominator comes from Drude's classical equation of

motion for free electrons with F° replaced by F (_,_). Upon solving the

same equation, the expression for c(_,_) is obtained in the form:

l-c 6°2o 1
- w2 2 (177)4_ 4_ + r

where the denominator has an additional frequency-dependence, besides

6o2, coming from b(_,_) in r(_,_).

Unfortunately, unlike the classical Drude equation, Equation (177)

is inconsistent with the Kramers-Kronig relation,

Jl-c = 2 G(6o')d6o' (178)
_ - _ (6o,2_we )

0

We shall calculate e(g,_) from Equation (178) for both cases where
0

(i) rep(_,_) is the only important term and (ii)F ee(_,_) and Y M need
be considered. In any case, an exact solution to the integral is diffi-

cult due to the complicated structure of 6o-dependence in bep(k,_), and
a suitable approximation method has to be used.

When o(6o) contains only Fep, we have:
4- _vo

6o 2 /_ i_ o b d6o'
1-c

o j ep ep
, o 2 2 (6o2__02,j

4_ -co (co 2+ (rep) bep) ,

+co

2 ?w b (x) dx
o 1 ep

-7 (toep) 2 ....-, (x2+ bep(x) 2) (xe_ye)

(179)

where x = I_------ and Y = " ca and where we have used:

\ ep

b (k,cc) = b (-la,Cc) (180)
ep ep
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In order to investigate the property of (l-c) in the two extreme limits,

co2 >> (P eOp)2 and w-+O, we use the relation:

1 (-1). , 1
(x2+ b 2) (x e - y2) = (y2 + b2) ix 2 + b 2

L

and we have:

4_

q-oo

_°oa i

4_[ ( - Co

b (x) dx

(y2 + b 2) (x a + b 2)

(181)

.... b (x) dx ]_ (x e _ ya) (ya +b e ) 3

--OO

where the subscript ep has been dropped for convenience, and ba's

appearing in the integrand are all functions of x and not of y.

Before attempting to solve Equation (181), it may be remembered

that b (x) is a very slowly varying function of x throughout the entire
ep

spectral range except when the temperature is such as to give i << _ .<<

in the very far infrared, and that b (_,_) is ~ O(!), being always

greater than unity for _ > O. ep

In the limit of _ >> _, Equation (181) now becomes:

= _-l-c coo2

4 _ 4_ _-[_"-

(182)

where:

ep
_7

co oa

b (x) dx = _ ,? c(co) dco (183)

(x 2 + b 2) co a 0
0

In obtaining Equation (183), it was assumed that b (x) --b (-x) and

that b(x) does not have a singularity in the complex x-plane.

We notice in Equation (183) that, when o(_) satisfies the sum rule:

CxD

/ c(co) dco = COoa (184)
' 47 _

0
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we simply have _ = i.
ep

In the limiL of _ << i, we obtain from Equation (181)

o = o i 6

)_ e______
•t'" 4re ('Pep _2

(185)

where:

+ oo + oo

_ep__ : 1 dx b(x) -

"=._ --w-- (rl* b2) (x 2 + b 2)
_ r I _ O - _>o - oo

dx b (x) , ",

(x 2 - q) (q+ b 'e) ' (186)

The presence of l] in the integrands implies that, in solving the

integrals by a contour in complex x-space the zeros of b (x) must be

taken as the zeros of the integrands and not as singularities of the

integrands, for all />> q > O. In this case, it is easily shown that the

second integral vanishes, and we have:

_ep = 1 dx b(x) ' / >> _ > 0

_2 _ - co ( x2+ b2) ( b2+ 1l)
(187)

The integrand is taken to vanish at the zeros of b(x).

Upon comparing Equations (182) and (185), we construct one possible

form of (l-c), namely:

1- C CO 2 _)o ep (188)

_4_ 4:71 Cd + (re 2 2

where _ and _ may or may not depend on c_, and if 8
ep ep

u!, we simply have:

is independent of

= _ _ = 1 (189)
ep ep

Taking 8 and #2 to be independent of c_:, is essentially equivalent to
ep

evaluating the integral (28) by replacing b e of denominator by a parameter

_R In fact_ such an approximation is reasonably well justified for bep(X )

is a very slowly varying function of w for all -m < x < +._,, except for
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the case of 15 _ << _ (which can occur at very low temperature and in the
very far infrared limit). The parameter which best approxin_tes the
integrand may be found by a successive approximation, solving the identity
equation:

(_) = b (i _o, _) (19o)
ep

< J?e_ \,: _o = KT

where _(_) is independent of w.

By such an approximation, Equation (179) is readily solved, and we

obtain:

1 -_i___i_c_ o i ( 19 i)

0 _ _2
4_ 4_ <2 _ (Fep)-

which applies to all temperatures and cl:l'sexcept for the case of

1 << _ << _ in which b can be a very rapidly varying function of w,
ep

although the over-all magnitude of (F o
bep ) is generally very small.ep

It is seen that Equation (191) is identical with Equation (188)

when we put _ = 1 and take _ as a frequency-independent parameter.
ep

Further, the sum rule Equation (184) is automatically satisfied.

Th_ said statement that b (x) has zeros but no singularities in
ep

the complex x- or _-plane can be understood upon e_amining the complete

expression of b (M,_) in the complex _-plane. From Paragraph C, we
ep

have the following expression for b (_):
ep

b(_) = bI(_) I_ i bII(_)

: -a

/ '.\

_i(e 2_i cos 2_o -i) + _oe2Bi sin 2_2 (_)

2

ta z -_- _ae_
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II
+ J (_)

5
Fk e (ee_icos2_e -i) -ki e2_l sin 2k2] _

Fkl (em_ic°s2k2 -I) +_2 e 2klsin 2_2]

(ekl cask2-i) 2 eakZsin_{J I (_)+2K I (_)
//

+ 2e_isinB2 (e_isin_m-l)

_ico s k2 - i) 2-e2_isink2]

where we have put:

J (_,cO = jl (_) + i jll (_)
n n n

K (_,c_) = K I (_) + i K II (_)
n n n

j I(_) = j I (__)
n n

(L

_(eY+e-Y) e_ico s_2-e2_ico s2_ - i]

ynHy D(_,y)

0

(192)

Cg

JnlI(_) = _JnIl(_) = _f yndy

0

[e2 _i sin2_2 - (eY+e -Y) e _ isin_e]

D(_ ,y)

Cg

K I(_) = K I /n n (-_) = yndy

0

C_

Knll(_) = Knll(-_) = ,fyndy

0

_eY+e-Y)e_icos_e-e2_icos _-

(eY- i) D (_,y)

Ee 2_i sin2_2 -(eY+e -Y) e _i sin_2]

(eY- i) D(_,y)

(193)

where:
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D(_,y) = [( ey-e_Ic°s _2)e+ ee_i sine _e_

× [(e_icos k2- e-Y)e + ee_isine_e] (194)

Similarly, the expression for bll(_) is obtained upon replacing
, KnI

(jnI, Kn_ and in.J II KI5 by (Jn 'II Kn )II" and (-jnl,+ ), respectively

A detailed study of the Expressions (192) and (193) shows that b (_)

has no singularity, but has an infinite number of zeros on the real axis

of the b-plane at

n

_= +- i7 _

n = i, 2, 3, ....

(195)

This implies that in obtaining the solution in Equation (191), we

must make sure that only those values of _ which meet the condition:

n (196)+ 7

: n = I, 2, 3, 4, ....

are considered. We further notice, in Equation (190) which defines _,

that any _ which is found from Equation (190) satisfies the condition

in Equation (196) automatically. The solution to Equation (190) is

obtained upon putting _l = O and be = bob into Equations (192) and (193).

We thus have:

_(c_) = bep (i_o_)

I +sine (_o_)

_o_ J o (_)
5

I tan (_o$) J I (_o_)5

cos( o )

(197)

where we have used the relation:
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Jn II (i_o_)

Jnl (i_o_)

and :

Jnl (i_o _)

K ll(i_o _ )
= n = -2 tan (boB)

K l(i_o_)
n

(]6

= yndy[(eY-cos_n_) (cos_o_-e -y) + sin2(_n_)]

o [(eY-cos_o_)2+sin2_o_7 [cOSmoS-e-Y) 2 + sin2(_o_)]

C_

Knl(igo_) = ; yndy [---]

o (eY-l) f---] [---]

(198)

(199)

Evaluations of _(c_) in the two limiting cases, co >> i and _ << I, are

simplified considerably.

In the limit _ >> I, we have:

oo

j I ~ m m+z ]= cos (_o_)n'. i-_ cos (Fto_)
n _ (m+2)n+l

m= 1

(200)

m-1
oo

_[ i I OfK I _ n:cos(_o_) 2n+----_' _ +n (m+e) n+i
n]=2 S: 1

For n=4 and n=5, it is safe to take only the first terms of Equation (200),

and we have:

jl 120 cos (_o_) ; J4 ~ 24 cos (ko_)
5

_~ 3T c°s (_o_) (201)

jo ~ 124
5

On the other hand, in the limit _ << I, it easily follows that:

I -
n

n+i cos (_o_)
O6

8 (n+i) sin4 <____)
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n cos (lao_)
(_

8n

sin 4 _ u,_8 _ (202)

/

: _o_# _ (m = O, i, 2, ...)

Thus, the identity Equation (197) is reduced to the following two corres-

ponding to the limits, _ >> 1 and _ << i, respectively.

_o

(i + sin 2 _o_) fsin (_o_) + (_o_) (l-cos_o_) ]

2

(203)

(_o_) 2 _ (I+ sine_o_) E_ccesin(_o_)+ _o _ (l-cos_o_) ] (204)

_o 4 sin 4 (/lao_\,

These equations are in a numerically solvable form provided that we

o (_). The solutions to these equations
know the value of _o and hence Fep

.may be obtained with the help of our formula for £ o (_). According to

Equation (164) it is seen that: ep

_o ~ i << i (205)

in the limit _ >> i, and the only possible solution to Equation (203)

exists when (Po_) << I. Thus we find:

_ i : o_ >> i (206)

On the other hand, if _ << 1 (high temperature), Equation (164) tells us

that F ° _ T and _o_COnstant such that:
ep

_o_0 (i)

According to Equation (187), b(x) and _ are _ 0 (I).

from Equation (204):

We thus find,
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i + sin2(_o_ ) : _ << i (207)

f. Bo_ ",
4sin a

k

where (_o_) _ 0 (i) < 2

According to the result shown in Equation (206), the denominator in

the dispersion formula for (l-c) is to be taken as:

'/ 1

_2 + (FOp)2 , (208)

when _ >> I, while that of o(_) is to be taken as:

i

w2 o )2 2 (209)
+ (rep (_)

with b > i.

In the forthcoming applications of the theory to practical cases,

we shall in general take _ as a temperature-dependent parameter to be

determined by fitting theoretical equations to experimental curves,

while b is calculated theoretically.
ep

G. CALCULATION OF c (_,_) WITH THE ELECTRON-ELECTRON COLLISIONS

AND IMPURITY EFFECTS TAKEN INTO ACCOUNT

We have thus far considered only the part of dispersion which is

contributed by the bulk electron-phonon processes. For a more general

calculation of c (_,_), we must use the Equations (175) and (176) in the

Kramers-Kronig relation. Aside from this, the calculational procedure

is similar to that of paragraph E.

For the sake of convenience, we define the following notations.

_o(_) = _F o _ep + o o_ep ee + M _ • _- F o b + F° +F_
/ ...... ' o- ep ep ee

_ee(C0 , = F °e (c_) (210)
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2 I 2
_+ - 2 aee

i +4_ + 1+2 _ee

Then, the dispersion denominator in o(_,_) can be put into the form:

and we have:

(w2 +r2) = (_2 +_2)+ (_2 +_)_

_2
ee

602 _ee _°(60) + e_e (212)o(k,e) - o
4_ (602+ _2) (we + a2)

+

(211)

where _'s without bars represent quantities of Equation (210) with

ep replaced by be (g,_), where _ep is a temperature-dependent but
frequency-dependen_ parameter similar to _ assumed in Paragraph E. A

close examination of _ ± in Equation (210) shows that:

+ , g± > 0 (213)

In solving the Kramers-Kronig relation, we shall again use _ep in

place of bep in the denominators. This approximation is just as much

valid as the same approximation that was adopted in paragraph E. Then

we have:

+ oo <f_°(60') + °°'2)ee
1 - E = . 6002 f_ 2 P! d60'

4_ 4_ ee J
_ _ 60,2+ _+2)(60,2+__2)(60,2_602)

COl2
+oo Co (60,) +_

6020 2/
ee d60' ee

4_

-oo (60,2 + _2) ((0,2 + _2)(60,2 _602)

(214)

This may be solved by taking the contour integral in the upper half

of the complex 60'-plane enclosing the poles on the Im-axis at 60'= +i
+

and +i _-, the semi-circular arc extending from 60' = +_ to +i_ and then

to -_, and the contour being indented above the real points at 60' = ± 60
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We thus obtain:

a _e
I-C _ 600 ee

-2 _2

f_- gee "//I g + gee .......
×

÷

In general, we have:

(215)

o << i ; _ << 1 (216)

ee ee

for all w in the free electron region of spectrum, and thus:

± _ _ ee _l_ (217)
O "/

2

(,# )

so that Equation (215) can be reduced to the form:

1 no(i _o)i-c _ _ . = i (218)

where _o (i%) is real since bep (ix) = bep

is found from the identity equation:

(-ix) and the parameter _ep

= b (it) (219)
ep

o

_= - o o + fM )h_(Fep _ + l_ee

o

which becomes identical to Equation (197) in Section IV Paragraph F when Fee
and F ° are small compared with the electron-phonon contribution. We found
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previously that, at low temperatures (_, >> i), we have:

o << i • _ _ I (220)
F ep ' ep

while F

0

and FM

o (_) decreases relatively slowly, like _T e, as T is decreased
ee

is the constant, "Restwiderstand" term, so that, in this limit:

$ 45 _ (re ° +FM ) = to (221)

independent of 9._ Therefore, fortunately enough, we need not be concerned

with evaluating p at all at low temperatures and (l-c) is simply given

by:

1 - f _ W02 1

---- o )2 : _ >> I (222)+r M

o and o
On the other hand, at not too low temperatures_ Fee F M are both

o _ so that the expression for (l-c) is nearly the
much smaller than ?ep

same as that obtained in paragraph F.

Similarly, the properties indicated in Equation (216) enable us to

write down c in a reduced form:

<
- _ _°a +[_ o(_'c_)] a _o_ee /

(223)

which is to be applied whenever Equation (108) is applicable.

It must be remembered that the electron-photon part of _o(_,_ ) in

Equation (223) is not necessarily smaller than (F2e + E_) because

bep (_,_), instead of _, is multiplied to F o(_) in fl . In fact, it is
ep o

found that the rapid decrease of F o (i.e., like ~ T 5) with decrease in

%p
T is exactly compensated by the _ _-Z - dependence of bep(_ , _) in certain

parts of the free electron spectrum.
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SECTIONV. ABSORPTIVITY,REFLECTIVITY,OPTICALSIZE OFCONDUCTION
ELECTRONS,ANDOTHERPROPERTIESOFMETALS

A. BASICFORMULASFROMSECTIONIV

The formulas for optical conductivity, 0([0), and dielectric constant,

c([0), were obtained in the preceding section, first by considering the

contribution of only the electron-phonon processes, and second, for the

more general case where electron-electron collisions and impurity scatter-

ing also need to be taken into account.

In the applications that follow, we shall use the general formulae

obtained for the second case.

_ is not neglected, the expression for o(c0)
When the quantity _2ee

and c(c0) take the form:

o32 2
o([0) = o n o

Go ([0) (224)
4_ n 2

1

[1-c<[0)]= O
G ([0) (225
6

where: 2

1 = [02 + _2
O

2 [02 _2
n2 = + 0

[02

I + _O--_-_ e
Go(_0 ) :

• [0 2<--<ee?

G (_o) :
6

1+2< -_ ._2
_ee

I + nee

(226)

o (cO (_,cO + o (cO +r°
_o : Fep bep Fee M
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_o =P°p (m) _ep (co) + F ° (cO +F oee M

The multiplicative factors, Go and GE, are corrections due to electron-

electron collisions and, in general, are of the order of unity. The

entire temperature-dependence in Equations (224) and (225) appears only

and_ . Only_ shows frequency dependence through the termthrough _o o o

bep(_,_ ). The Equations (224) and (225) are more/general\o than Equations

(223) and (218), since the latter two neglect ()_ which is small
\$2ee /

compared to unity. In general, _-T_ _ is small compared to

/

unity
\oo_ /

throughout the entire free-electon spectrum (i.e., k _ 0.5 _ 1.0 _) for

all temperatures, so that:

GE(_ ) _ i
(227)

Go(e ) _ I + _o _ ee

for aIn order to justify this statement, let us compute _ /
ee

metal which shows a relatively large contribution of electron-electron

collisions, and see at what wavelength the relations of Equation (227)

are not valid. For this purpose, we write Fo (_) as:
ee

o 1
F (_) = R
ee ee _ (228)

where R is independent of both T and w. Then, we have:ee

: X = 2._c (_)
6O

For most metals, the values of R range from ~10 I° sec -i to _I012
ee

see -i while @ is of the order of ~102 (°K). Therefore, for @ = 300°K

Ree = i0 la sec "I, the wavelength which gives \_ee / _ 0.i (~i0 percent

correction) is found as 0.2 ~ 0.3 _, which is already outside the free
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electron region of the spectrum. On the other hand, /( _2 hi':is not
\

_ _ >> I in the near infrared.

\

necessarily small, since we have _o /

In order to predict values of various dispersion properties such as

the optical constants, absorptivity and reflectivity, etc., at different

temperatures by knowing the values of these quantities at one temperature,

it is sufficient to specify the temperature-dependence of _o and _o in

addition to the values of the constant parameters entering in _
O, O

and g . At not too low temperatures, g o and _o reduce to:
ee

o (e) (_,_)
no Fep bep

- o (_)
_o _ r (_) _ep

(230)

where _ep (_) and bep (_,_) are given by Equations (197) and (168) re-

spectively, and F o (_) is given by:
ep

ge0(_)p = R iep- J_ (_) (231)

< ® _ we have:
a_ %>>_ = ,,

In particular, for _ = KT T /

i [ j o(_) +_5 + _ 5 i "] (232)
bep(_'_) _ bee (_) - 5J_ (_) _ e(_)- i

This relation applies in the spectral range of X < I0 _. At very low

temperatures (_ >> i), we may use

Oo (c_) + FM \ T > 0o ee ;

O

FM ; T_O

I0 Fee _, _ >> _

(233)
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where only F o retains a temperature-dependence of _ T 2. As the numerical
ee

computations in a later section will show, the residual phonon term

_0 \' generally has a value which is comparable with the room temper-

(Fe_bep)_ o and o Thisature value of and hence is much larger thanFb I Fe e •

is clearly in contrast to what might be expected from the classical theory

and is also in contrast to the suggestion by Pitaevskii (1958), Silin

(1958) and Gurzhi (1959) that, at low temperatures, only the electron-

electron collisions and impurity scattering may play a dominant role. On

the other hand, it provides strong support for Holstein's suggestion

(Holstein 1954) that the bulk electron-phonon processes may make a large

contribution to absorptivity even at a very low temperature.

The quantity, Q entering in the correction factor, G_:(co), is inde-
ee'

pendent of both frequency and temperature. For convenience in practical

applications, we write G of Equation (227) into the form:

R _

G,:,(_) = I ee 5 29 X i0 +- \
X2 p:e (234)

: Xin_

It is easily seen that the value of Go(c0 ) remains of the order of unity

even at very low temperatures, since according to Equation (233):

R
ee 5.29 X i0 ia

(G0-1) _ i0 R X2 _2 ; _ >> c_
ep

(235)

R . 10+_ ,ee 5 29 X

o Ks ,c,a ; T _ O°K

Fm
<<

The first equation is not large since R
ee

large since X 2 is itself large.

<< R
ep

and the second is not

In the following part of this section, we shall compute various dis-

persion properties for different spectral ranges applicable at any tem.

perature. Discussion of these properties for dlfferent ranges of tempera-

ture is emitted since the preceding discussion on the temperature-depend-

ence of _o' _o' and G o are sufficient to specify the temperature-depend-

ence of other dispersion properties.
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In what follows, the free-electron spectrum is divided into four

segments: [i] oo2 << _2 -2 2; [ii] oo2 e -2 [ii_ e _2o _o << oo _ _o' _o << ooo2; _o, _oO

<< oo2 << oo02; [i_ oo2 < COo2, where ooo is the frequency characteristic of

the electron plasma such that c > 0 for oo> ooo and e < 0 (free electron

region) for _ < o_0

B. OPTICAL CONSTANTS, n AND k

The fundamental relations between the optical constants (n,k) and the

dispersion properties (c,c) were derived from Maxwell's theory of electro-

magnetic fields in section II. They are:

c(oo) = (ne - ke)

nkoo
o(oo)-

2g

(236)

where (n,k) constitute the real and imaginary parts of the complex index

of refraction N(oo):

N(oo) = (n - ik) (237)

Upon inverting the relations of Equation (236), we obtain (n,k) in

terms of (c,o) as follows:

k : - e (oo)+ i + e
60C i

(238)

where O(_) has the meaning:

+ I c > 0 (ooo< w)e (oo)= - 1 c < 0 (%> w) (239)

and where c and _ are to be substituted from Equations (224) and (225).

Substitution of Equations (224) and (225) into Equation (238) yields

the following expressions of n and k applicable in various spectral ranges

where oo < ooo:
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{i) we << _ 2 ;_ e << _ e
O ' O O

n _k _

to
i o

L (bep- o
(240)

where:

co 2 n ee
o i e i

Odc 4_ o m* O

(241)

/

o (F o + Fo + o
= keP ep g M

At not too low temperatures, we have F o _ F°, and:
ep

_]n _k _ b 2
V ep

(242)

At very low temperatures:

_0 0 0_E +F
ee M

(243)

independent of co, and:

o _ R X 124 _ T "_5
Fep ep \ ® ,

(244)

2 -2 [02
{ii] _2 _0 ' _0 <<

n

k

1 COo _ 1 + Go - 1

v/_ / CO i /

(245)

i + _ G 1 + i
tO l % ..... j
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2 << 2 << tO 2
{iii} _ O' f_O O

00 _ tJ

i O O
n _' 2 Go

W 2

: _ ( X2 + constant)

(246)

where _ and Go represent _ and G o
O O

given by Equation (8).

with b
ep

(_,_) replaced by Pep (_)

{ iv) _2 g _o 2

_ w° -w2 _½ [{ <- _° GO _o 2 _-_ 1_2n _ 2 i + 2
W gJ - L I_ j

2000 O

2600 / CO L>O - L"2

In particular, when w _ _ , we have:
O

1 _ f_oGc \i
_2 << i

n_k- _ _0O /

(247)

2 + i _

(248)

e_O

_ O

4_

Equations (240) ~ (248), for n and k are plotted qualitatively in

FIGURE 15 as functions of X.

C. ABSORPTIVITY AND REFLECTIVITY

In general, absorption in the free-electron region of the optical
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spectrum is attributed to two separate mechanisms;bulk process and the
anomalous skin effect. The bulk absorption includes contributions by
the electron-phonon processes that was suggested by Holstein (1954) and
is the heart of the present theory, as well as the usual electron-electron
collisions and impurity scattering. The theory of anomalous skin effects
was first offered by Reuter and Sondheimer(1948) and was later elaborated
by Dingle (1952, 1953) and Gordon and Sondheimer(1953). Theories which
formulate dispersion with consideration of all three, anomalous skin
effects, electron-electron collisions and impurity scattering simultane-
ously, have been developed by Pitaevskii (1958).

Further attempts to formulate the bulk electron-phonon processes
have been madeand a formula for infrared absorption has been obtained
by Gurzhi (1958) by sowing the transport equations for conduction electron_.

The infrared absorptivity obtained by Gurzhi applies mostly in the
near infrared, and agrees exactly with the result of the present theory
in the samelimit of the free-electron spectrum, although the calculational
methods adopted are different. The present theory applies to virtually
the entire free-electron spectrum for all temperatures.

Denoting the bulk absorptivity, skin absorptivity, and total absorp-
tivity as AB, AS, and A respectively, we have:

A = AB + AS (249)

The total reflectivity, R, is simply, (I-A). The skin part of absorp-
tivity is important only at very low temperatures, and will be neglected
at all other temperatures. The theory of anomalousskin effects was
proposed originally in order to explain the low temperature absorption in
metals. That skin effects alone cannot explain the observed low tempera-
ture absorption has been madeclear in a numberof papers, and it was to
bridge this gap between theory and experiment that Holstein (1954) offered
his mechanismof bulk electron-phonon processes. The results of the
present theory not only support Holsteins's suggestion, but also show that
such a bulk mechanism, for manymetals, is far more important than the
skin absorption even at very low temperatures.

It is well known that, when the anomalous skin effect cannot be neg-
lected, it is diffuse rather than specular reflection of electrons at the
metallic surface that contributes to low temperature infrared absorption.
Thus we shall use the well-known formula:

3 VF
(250)AS = _ C



134

as the absorptivity due to the electrons scattered diffusely at the sur-
face, where vF is the Fermi velocity of electrons.

Weobtained expressions for the optical constants (n,k) in Equation
(108) as functions of the parameters c(_) and o(_). Therefore, in order
to obtain absorptivity of reflectivity as a function of (e,o), we shall
makeuse of the relation:

4n (251)
AB = (n+l)2 + k2

where (n,k) contain contributions from the bulk alone. Thus we readily
obtain the relation:

AB =
2 L 0(_0) + + _ 10e ½ (252)

7

Upon substitution Equations (224) and (225) into the above, we obtain

the following results for various spectral ranges _ < _o"

2 _ 2 << Wo 2 (Generalized Hagen-Rubens formula):{i} w2 << _o ' 0

_0A B _23/2 2
_O /

/ V _ Fe_ (bep_l)_= 2 Odc 1 + F °
(253)

where the same remarks apply to the correction factor to the right as in

[i} of Section IV, Paragraph B. This correction factor can be signifi-

cantly larger than unity at low temperatures. At not too low temperatures,

b !
we have _ _ _ F ° so that the correction factor is simply e_" Even at

room temperature, this can introduce a correction in the order of i0 _ 20

percent if:

_KO _2 (254)W 2 > _ /"

Equation (253) is exactly the Hagen-Rubens formula when the correc-

tion factor is equated to unity. The original Hagan-Rubens formula for

reflectivity has been found to agree well with observed values, and our
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formula for reflectivity:

v <i + Fe_ (bep-l)_½ (255)R= i 2/ Od c F °

is expected to improve the comparison with the experiment. For this

reason, we shall call Equations (253) and (255) the "generalized Hagen-
Rubens formula" :

[ii ] w 2 _ _ _e << _ 2 (X < i0_ at T = 300 ° K)
O _ O O

<_ \A B _ 2S/2 2 ]
CO /

0

_2 _2 2 i !

i + o 2 - I
co_l Go

(256)

[iii] _ e _ 2 << oo2 << co 2
0 _ 0 0

50 k ~ / m* )AB _ 2 Go(e ) = ( _w _n e2 o
o / e

(257)

where:

(_o G )= _ + coe
o _2

ee

co2 \
o _ + o o (258)

= Fep ep Fee + FM + _ee

cos k 0°
F°b + 1 : T >> K
ep ep _ee ,

At very low temperatures and for _ >> _, Equation (257) reduces to:

AB / m* < Rep + 5.29 X i0+6 R>_ ee_n e2 i0 X2 02 :
e

X in _ (259)
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The skin term A of Equation (250) must be added to obtain the total

absorptivity. @his formula will be used repeatedly in the future in

specific applications, and it will be shm_ that it gives values in ex-

cellent agreement with the experiment. A very interesting feature of

Equation (259) is the absence of temperature dependence. Further, the

/
dominant term represented by t does not contain _-dependence. The

", 10
values of R and R are in general of the same order of magnitude as

ep ee

Eo and F o respectively, of room temperature so that the quantities
ep ee

within (---) represent a large value while, classically and from some

existing quantum mechanical theories, the electron-phonon term is expected

to decrease rapidly, like _T _, when T is decreased to O°K.

Now, let us compare the magnitudes of the two terms with the help of

some typical numbers. }Mny metals have R _ i0 i;s _ i0 l!' sec -i while
ep

R is of the order of '_]0 ° _ i011 sec -I and, for exceptionally large
ee

case,-lO i:_ sec -±. Thus, for R = i0 I_ sec -i , R : i0 I' sec -1, _.j=
ep ee

300°K, and X= ib, we have:

Rep__ = i0 Is sec -i (260)

i0

5.29 X iO

R
ee

o
]k 2 ,¢,:,_

'_ (0.06) X lO±Ssec -l

In this case, the electron-electron collisions introduce a correction

of about _ 6 percent while, if we take R = i0 i2 sec -i the correction
' ee '

is as big as 60 percent. Thus, it is clear that, while the electron-

electron collision plays a relatively small part even at very low tempera-

tures for ninny metals, it can be quite significant for some special cases.

{iv}

A B

o
:k! _ _ (0

0

2 I + G _ _ 2 _ c0e -
/ O

2

s ", I _£xco £ \£7 1

\ 2CO L " o J

(261)
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In particular at _2 _, _2 this is reduced to:
O'

A B _ 2 s/£ _ o _0(_°)
0

\J
',2 (262)

At such large frequencies, the second term in G (_) due to electron-
0

electron collisions may become predominant, especially for those metals

which have large values of R .
ee

The bulk absorptivity and reflectivity are plotted qualitatively in

FIGURE 17 where the significance of the correction factor, G (_) is

shown in the high-frequency limit.

D. TEMPERATURE-DEPENDENT SCATTERING CROSS-SECTION, OPTICAL SIZE OF

ELECTRONS, AND THE VIRTUAL MASS OF LIGHT QUANTUM

From our formulas for temperature-dependent optical constants, (n,k)

or (c,e), we can define the temperature-dependent scattering amplitude,

scattering cross-section per electron, and hence the optical radius of

the electron. By scattering cross-section, we mean the effective cross-

section of a conduction electron which the external electromagnetic field

sees for interaction, including both pure scattering and absorption. In

this sense, it may also be called "the dispersion cross-section per

electron." If such a cross-section is denoted as c (_,T) measured in
S

cm 2, the optical radius of an electron, as, is defined as:

2

a = c (263)
S S

and is measured in cm.

The concept of "virtual mass of a photon _' in metals (and also in

dielectric media as well) is a rather new one and its definition is help-

ful in a qualitative discussion of infrared dispersion in metals. A light

quantum of frequency _, when it enters a medium with index of refraction

n > I, behaves as a light quantum of frequency, < _, as if it sud-

denly gained a nonzero mass m and that:
P

\2

w e = _ "} + Kec e (264)
n p
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K = P
p

This is a relation which is often used to obtain the expression of

n in dielectric crystals, and is not anything particularly new. A quick

glance at the relation reminds us of the familiar expression for relativ-

istic energy of a particle in terms of kinetic and mass terms. Thus, we

may conveniently define the first term of Equation (264) as the

kinetic term and the second as the mass term, so that:

_ / n2 0
m - c_ -_ (265)p n

Likewise, we may treat the mass term as a potential term such that an

increase in m and hence a decrease in the kinetic term correspond to an
P

increase in a potential of some kind. In fact, the physical picture of

dispersion properties, at least in the free-electron region, can be better

understood in terms of such an argument. For instance, the increase of

reflectivity of light by a metal with increase in index of reflection may

be explained in analogy with the increase in backward scattering a part-

icle by an increased positive potential step, and hence a smaller kinetic

energy in the new potential field. We are essentially applying our

knowledge of the elementary particle picture to optical dispersion in

contrast to the usual practice of applying optics to massed particles.

We shall now calculate various properties explained above with the

help of the relations of Section II. Upon combining Equations (224) and

(225) with the dispersion relations for n and k of Section II, we easily

obtain the following tempeTature-dependent expres!ions for the real and

imaginary parts of the scattering amplitudes, (ReF) and (Ij):

iReF = r_ _ -i + I+ - (266)

- / w\2 /2 [ +F=r*Im o ) I_I i+ J

where r* is the effective classical radius of electrons and is related
O

to the usual classical radius of electron r as:
O

r* e2 Q m _
= = o r (267)

o m*c 2 m* o
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where m is the rest mass of an electron.
O

and the optical radius, a , areThe scattering cross-section, as, s
obtained from the usual relation:

Os = _aas = _ I _ (268)
m

The mass of a photon m is computed from Equation (265) by using Lhe
P

formulas for n(_) that were obtained in Section IV paragraph B. Here

again, we shall compute these quantities for various segments of the

free-electron spectrum when _ < _ . They are:
O

0 ' 0 0 '

i

_ _ 7RF_ I F _ _ r*

e m o _ o °O

4_ _ c r* 2_o e (269)
_S O 000 _O

r* X \2 " _o \ F
a _ 2 o o (270)

S _ /

m -- c 2 (271)P

where X is the critical wavelength:
O

X - 2_c (272)
O W

O

We notice that m c 2 is nearly the entire photon energy _ meaning
P

that, in this part of the spectrum, the photon may seem nearly motionless

to a Fermi electron of speed F _i08 (cm/sec), and hence there is a greater

probability of encounter, on the average, between th_ photon of mass

m and the conduction electrons during the period of I_ _ (second).
P \ _ /'
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{ii} W2 .__ _ 2 , _ 2 << W 2
0 0 0

R_ v/i-r *
e o

w _2
0

:
Gc _ -i (273)

m o
0

Gc
i'

]
q_

+ i i
J

(274)

s 2 _2-r ° X° 1 I ¢0P-'i'; + +
(275)

a
s

=2 _ o o w (276)

< hw
m -_
p c2

{iii}
2 _ 2 << W2 << W 2

'1
0 0 0

Re_ _ 2 ro _ _-w° ,)2 [½ O_oc0m'_O (277)

I_2 r*_ w \im o w
O

(278)

c _4 r* X
S 0 0

(279)

1

a _ 2 (r* XO) _ (280)

mp _ T 1 - 4 0Oo_o_O7
(281)
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It is seen that c and a are independent of frequency and temperature
• S

while we found prevlously that absorptivity is independent of frequency

in this part of the spectrum. Formula (281) for m necessitates defining
such that m = 0 at co = co given by_

a frequency com p m

to

we _ o o > 0 (282)
m co

o

2 - -flee

Strictly speaking, Equation (281) is valid only for co smaller than

wm. This corresponds to the point where the index of refraction is

identically equal to unity and the light quantum behaves as though the

bulk of the metal is not different from vacuum. Photoelectric processes

which may be important at such a frequency have been neglected.

[iv} W2 _ coOe

ReF _ 2r cocoo ) " 2 i+ I ]co _2-co2 /i_] - I
2030 o

(283)

IF 2r cow 12 (_2_ t0o2G O _ (284)
2Wo \co /\cooa-coe J J + i

_ 2s/2 (r* lo)<i + I ik0 _ <_ __° _oh I (285)
C_S 0 2 COO tOO /

r*X _½_ _ _ _a _2_/4 o o i + _ _
S _ " W 0 _ COO 7

(286)

where ± co = (co -coo)"

When co >> co , both os and a approach very small but constant values

of the order, o and _ o , respectively, and vanish identically
\ enrf2-es

when there is no Umklapp process present. This is, of course, not strictly
true when we consider the contribution of bound electrons which are im-

portant in this part of the spectrum.
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The scattering cross section c s is plotted against X qualitatively

in FIG. 16. The X-dependence of mp is also sho_n. The general pattern

. m c_Qc .in the X-dependence of cs and _ may be compared wlth those of

absorptivity and reflectivity, respectively, of FIG. 17.

SECTION VI. PARAMAGNETIC AND FERROMAGNETIC TRANSITION METALS

A. INTRODUCTION

The calculations presented in the preceding chapters depend on the

assumption that the energy surface is spherical. This assumption has been

shown to work well for a variety of nontransition metals. However, for

many multivalent and transition metals which have been investigated from

a theoretical point of view, the surface of the Fermi level cuts through

two or more Brillouin zones, and it does not resemble the spherical shape

we considered in Sections IV and V.

In particular, the study of ferromagnetic and paramagnetic transition

elements represents a special problem from a theoretical point of view,

since the metallic properties of these metals have a rather peculiar de-

pendence on the place of the element in the periodic table. These special

properties are exhibited in the observed temperature dependences of re-

sistivity as well as of various thermodynamic properties. Behavior of

the ferromagnetic transition metals represents an even more special case.

Although these metals have been studied rather extensively as to their

dc electrical properties based on the quantum mechanical explanations,

very little work has been done on the optical and infrared dispersion

properties. Some of the qualitative features of the optical properties

of transition metals and transition metal alloys were presented by Mott

(1936, 1935).

In the transition metals such as Pt, Pd, Ir and Ni, the s-band and

d-band overlap and the Fermi level falls in this overlapping region. The

most widely investigated metals are the triad, Pt, Pd and Ni, which come

before Cu, Ag and Au in the periodic table, and are all face-centered cubic

lattices. In palladium, there is about 0.55 to 0.6 electron per atom in

5s states and the same number of holes in the 4d states. In pure platinum,

there is about 0.55 to 0.6 electron in 6s states and the same number of

holes in 5d states. In nickel, there is about 0.55 to 0.6 electron in

4s states and the same number of holes in 3d states. The density of

states o(E) of 4s and 3d states of nickel is schematically illustrated in

FIGURE 45 and are compared with 4s and 3d states of copper. The large

value of energy density of d states compared with s states is qualitatively

indicated, and it will be shown that this leads to important consequences.
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Some of the important physical consequences of the presence of positive

holes in the d-band are:

(a) the ferromagnetism or high paramagnetism shown by these metals;

(b) the low electrical conductivity and anomalous behavior of resist-

ance both at high and low temperatures;

(c) the low reflection coefficient for long wavelengths; and

(d) the high electronic specific heat.

Although all the above properties are mutually related, only the first

three will enter explicitly in calculations of optical and infrared dis-

persion properties. In the language of the optical dispersion theory,

the low reflectivity for long wavelengths is the direct consequence of

the low electrical conductivity. This may be explained on the basis of

the Hagen-Rubens formula for reflectivity R that is applicable at long

wavelengths:

R -l-.2 $ (287)
2_°dc

where it is seen that a low value of r-dc' the dc conductivity, results

in a low value of reflectivity.

The low electrical conductivity is a direct consequence of the large

density of states in the d-band. The transition matrix elements that con-

tribute to resistivity or the inverse of the relaxation time, _R' con-

tains a predominantly large contribution from the s-_d transitions, since

the probability of such a transition is multiplied by the large value of

the density of states of the final d-states. In fact, the interband

transitions from s to d states alone account for 90 percent or more of the

conductivity because of the large value of the transition probability

compared with the other modes of transitions, s-->s, d-+s, d-->d.

For the particular case of the ferromagnetic nickel, three states of

electronic configuration are possible: namely, 3d n 4s 2, 3d _ 4s i, and

3d i° states. The wave function for each atom will be a superposition of

the atomic wavefunctions corresponding to different electronic configura-

tions. If @2, @i and _o are the wavefunctions corresponding to the three

configuration states in the order listed above, the wavefunction in an

atom of the solid nickel will be in the form:

A2@ 2 + Ai_ i + Ao_, (288)
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where IA212, IAII 2, and IA 12 are constants representing the fraction of

occurrence of each of the three configurations. The mean number of elec-

trons in the s-states is then given by:

I I

ff : 2 X ,IA-' 2, 1 × IA_ :'_ (289)
S

which is equal to 0.55 _ 0.6 per atom. This is also equal to the number

of positive holes in the d-band. Another consideration enters in the

study of nickel on account of the ferromagnetic properties. It is outside

the scope of the present work to discuss in detail the mechanism that

gives rise to the ferromagnetism. We are only interested in the way the

ferromagnetism enters in the optical and infrared dispersion of metal.

It is sufficient to note that, in the ferromagnetic nickel, the d-states

with one orientation of the electron spin are filled, and the holes occur

only for those states of the d-band which correspond to the electron spins

oriented antiparallel to these filled states. The electrons in the s-

states, however, occur in equal mixture of the two spin states. The re-

sult of this is that there is a residual spin component equal to the mean

number of positive holes times the electron spin. Since the mean number

of holes per atom is exactly equal to the mean number of s electrons, the

residual spin per nickel atom at 0 K is:

: (0.55 _ 0.60)--7- (290)
2 s Z

The residual spin or the spontaneous magnetization decreases gradually

as temperature is increased, and the metal turns paramagnetic as tempera-

ture is increased further beyond the Curie point.

The important consequence of this property that will be of concern

in our calculations is that not all of the s-electrons are qualified to

make transitions to the empty d-states: only those s-electrons with the

spins antiparalled to the residual spin of the d-states will be able to

make transitions because of the Pauli exclusion principle. At 0°K, only
1
7 of the s-electrons are qualified, while, at a temperature above the

Curie point, practically all of the s-electrons are qualified. This

explains the large increase in the observed resistivity of Ni above the

Curie point (Gerlach, 1932), since the damping contributed by the tran-

sitions is directly proportional to the number of d-states which are

available for the transitions.

In short, the electrical properties and hence the optical and infra-

red behavior of a ferromagnetic metal will be a function of both the

spontaneous magnetization Z and temperature.
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If we denote the spontaneous magnetization per gram atom at any

temperature T°K and at 0°K by E(T) and Zo, respectively, the total number
of s-electrons that are qualified to make transitions to the empty d-states

may be defined as:

n n En = s X = s I + o (291)

s 2 2 7°

: I < X< 2

where n is the effective number of electrons in the s-band. This shows

immediately that resistivity of nickel has an additional temperature

dependence coming from E besides the usual temperature dependence coming

from the lattice vibrations. The explicit temperature dependence of the

factor X is available from the phenomenological theory of Weiss (1907)

at high temperature and the quantum mechanical theory of Heisenberg (1926)

at low temperatures. A detailed theoretical and phenomenological dis-

cussion on ferromagnetism and paramagnetism is offered by Van Vleck (1959).

For the purpose of our calculation that will follow, it is sufficient

to note that the phenomenological theory of Weiss shows that (X-l) in-

creases with increasing T like

-constant/T
e

at high temperatures (viz., T > 400°K), and that the theory of Heisenberg

shows that (X-l) decreases like T3/2 at low temperatures as T is decreased.

The observed and theoretical values of X and E are shown in Table XIV

at different temperatures for the ferromagnetic metals, Ni, Co, Fe and

others.

In the following part of the present section, probability of the

s_d transitions will be calculated by a method similar to that adopted

in Section IV for the intraband transitions. All the other modes of

transitions, d->d, s-_s, and d--_s will be neglected compared with the

s d transitions.

The weight factor multiplying the s-->d transition probability is about

i0 times the normal scattering probability according to the evidence pro-

vided by the data on the electronic specific heat (Wilson, 1936). This

means that neglecting all modes of transitions other than the s-band to

d-band transition will introduce an error of about i0 percent in the

calculated resistivity. Besides, the results on the intraband transitions

are satisfactorily presented by the calculations of Section IV.

Finally, it may be noted that the results that are obtained in the
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present chapter should be applicable just as well to interband transitions

in other multivalent metals. For nontransition multivalent metals, the

interband transitions do not necessarily contribute more than the intra-

band transitions. Whatever the case may be, it is useful to remember that

the total damping coefficient, including both the interband and intra-

band transitions, can be obtained simply by adding the damping coeffi-

cient that is obtained in the present chapter to that obtained in Section

IV for intraband transitions.

B. CALCULATION OF TRANSITION PROBABILITY

Because of the large effective mass of the d-electrons their contri-

bution to conductivity will be small and can be neglected compared with

that due to the s-electrons. The empty states in the d-band have a con-

siderable effect in that the s-electrons can be scattered not only into

energy levels in the s-band but also into the d-band. The large value of

the density of states in the final d states makes the s--_d transition

probability much larger than the normal s-->s transition probability.

Further, the d--+d and d--->s transition probabilities together are even

smaller than the s-->s transition probability due to large values of the

effective mass, md, of d-electrons compared with that of s-electrons,
m .

S

For this reason, the following calculations will include only the

s-->d transitions. Contribution to the conductivity coming from the s--_d

transitions alone explains at least 90 percent of the total conductivity

according to the evidence obtained from the data on the electronic specif-

ic heat (Wilson, 1936), 1938). In order to obtain the contributions of

the s--_s transition, results of Section IV may be used without necessity

of modification. Calculations of the s d transition probability involve

essentially the same theoretical approach as that adopted in Section IV.

The s d transition caused by a joint action of both the electromagnetic

field and the phonon field is again a secondorder effect, and may be

s (k_ representing such
calculated from the second-order coefficient B(2 ) _

a transition. There are eight different processes for the s--->d trans-

itions, four of which involved creation or annihilation of a photon in

the s-band, while the other four involved creation or annihilation of a

photon in the d-band. These eight processes are illustrated schemati-

cally in the accompanying Feynmann diagrams where (A) shows the first

four processes and (B) shows the other four processes.



150

' /\\(d/
iq ' t (k±q±p) ±p _-(, (k±q+-p)_

k

(s) (k ± p) (d)

(A) (B)

+q)

In the diagrams, the solid, curved, and broken lines represent the elec-

tron, photon, and phonon, respectively.

s---+d

The coefficient B (2_(k ± _ ± _) may be calculated by essentially
the same method as tha_ "a_opted in Section IV. We thus obtain the

following two equations corresponding to (A) and (B):

1 Q I+_N__ sd= + q 2N MVE msW(A) P q /, (E .k)

(292)

X
C-l) [ l-ei_t/4_ _ l-ei_' t/4J1E(k±p) - E(k) T l*i _o _ _'

= ± q _ , md_ E.(k+q)2N MVE
P q q /

X (-I) I" l-ei_t/_ l-ei_" t/_ ] (293)
E'(k±q) - E(k) _ E _ _" J

q

where the energy terms denoted as _, _', and _" in various resonance

factors are given by:
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={E' (_±_±_)- E(k)$_ $ E }

_' ={E' (_±_±i) - E(_±_) $ E)N (294)

_" ={E' (_±_±_)- E'(_±_)$_}

The energy, E'(_), (with a prime) represents the energy of a d-electron
and E(k), (without a prime) represents the energy of a s-electron with
momentum,(__k):

E' (k) = E k2
o 2md

E(k)
_2k2

2m
S

(295)

where E is the energy at the upper edge of the d-band. The constant

°sd
factor g represents the strength of the electron-phonon interaction

which is generally of the same order of magnitude as the energy of an

electron and has the same meaning as g which was used in Section IV. As

usual taking gSd and also g to be independent of the energy of the elec-

tron which is interacting with a phonon is the result of assuming that the

electron-ion potential within single unit-cells is reasonably flat, or

equivalently that the radius of the atomic core is much smaller than the

size of a single unit-cell. This assumption is satisfactory for common

applications such as in the present theory. The more general electron-

phonon interaction which also includes the deformation of ions was dis-

cussed by Bardeen (1937). A further discussion on this problem is offered

in the 1958 edition of The Theory of Metals by Wilson.

As in Section IV, we shall ignore the quantities of the order of

f ""I,and take:

/
E(k±i) E(k) _ _ =

(296)

E'(k_+q_+p) - E'(kiq) $ ,t_a_ ~ $ 4_co

Then, of all the terms in Equations (292) and (293), only those which

have _ in the resonance factors need be considered for our calculations,

since the others will contribute equally to both the emission and
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absorption of a photon and will thus cancel Out whenwe calculate the net
absorption term. By combining Equations (292) and (293), and using the
relation:

k m (k±q)

[ s ]E(kip)-E(k)$ 4_ m d E (k+-q)-E(k)$
-- - - q _=o

i+ ms_ ± m-s
md/ m d

+ ;d_0

(297)

we now have:

s--_d

B (2) (k±q±p)

NV_q sd

q 2N MVE _--I+N
p q J q s

(298)

× E._ _k _ + ms _ +_ __ms @ l-e i_t/_ (298)
md_ m d --

It may be noted that the value /_ ms _) of a transition metal is usually
\kmdj/

very much smaller than unity (< i__) and such a term in Equation (298) can
k i j

be neglected without any loss in _he qualitative merit of our calculations.

It is retained in Equation (298), however, because this term can be im-

portant when the results are applied to nontransition multivalent metals

for which the ratio of the effective mass values is not necessarily small.

The probability for the process in which an electron in the s-band

with momentum, _i, makes a transition to the d-state with momentum, k_2 ,

by a joint action of the electromagnetic and phonon fields is obtained

from Equation (298) upon using the usual relation:

Lira s --_ d 2 /
p (r) (k1___ke) = B (kl--->ke) / T (299)(s) T---_ oJ (2)

where we have put k kl and k e = (k±±_±i), and r = (±), s = (±) corres-

pond to emission and absorptions of phonons and photons, respectively.

Thus, we obtain:

P (r) (kF__>k2____>d = e2_4E 2(s)
12Vms2(_w)4

Gs_ r) (a) (300)

m____ )2 _ m s _ ,
X (q2 + k_ i + 2) 5(Ee-EI+rEq +s6 _)

, md /
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where we have taken:

, 42
E 2 = E' (_k2) = E

o 2m d

(k2) 2

(E. kD (E a) = o

(E. _kD 2 (_E q)2 _ E2
k2 =

q2

and

G _r)(q) = _ 4_ q2gSd _ 1 + N _s N ME N q (301)

P q q

The probability for an electron initially at the state of energy, _i,

in the s-band to make a transition to the final state of energy, E2, in
the d-band is defined as:

P(s)(r) (El) sd = 2'--_L P (s)(r)(ki___>k2)_ [I-F (E2)] (302)

k2

where the factor 2 is multiplied because two electrons with opposite spins

can occupy the state of same momentum,k2, according to the Pauli exclusion

principle, and F(E_) is the Fermi function evaluated at the final state,
E_.

The summation over _e may be replaced by the summation over the phonon

momentum, 3, and hence by an integral:

V _/ (d q) ..... (303)
(2_) ,3

provided that we are careful in establishing the integral limits in the

integral over q since the density of states at the final state now contain
a factor

I I

_/E - E2
0
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instead of v_- . Occurrence of the factor _ E -E instead of vr-E-in

the density-of-states function leads to the low_r limit in the q-integral

given by:

qmin = I kd - ks (304)

l

where k d and k are the momenta corresponding to the highest occupieds

levels in the d- and s-bands, respectively, and are given by those at the

Fermi level according to the relations:

i

/ 2ms >
ks= _ EF

i

r am d I _k d = L-_-_/---(Eo - EF)

(305)

Equation (302) is solved by removing the delta function through integra-
/ "X

tion over the angular variable cos 8= _-kl._ )- In obtaining Equation

\k i _ a
(300), we have averaged (E._). 2 over the a_muthal angle with kl s the

polar axis; similarly, (_E- kl) was substituted for being its value that

is obtained later on integrating over (d3kl).

We now have:

e2452mdE2 Wdkl _ ms _2/°e (r)(Ei) (4_)4 i + q dq g (r) (q) (306)
(s) sd - 48_2ms2 m d / sd

qm

[ [1-F(E - q× i + i + rE - s_)]

where w d is the weight factor which comes from the density of states of

the d-band, and is the same as that used by Wilson (1938), and where

G (r) (q) and E have been assumed to be independent of the angular vari-
q

ables. As in Section IV, we shall assume that most of the contributions

to Equation (306) come from those electrons which are in the neighborhood

and kl 2 in [.. _ in Equation (306) may be replaced by the Fermi momentum
k
s"

Now, we need to average Equation (306) over all the initial occupied
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states in the s-band using the Fermi function, F(EI) , for the s-band,
and we have:

_ (r)
(s) (s-- d)>

Z _(r) (El) F(Ez)
kl r(s) sd

ee E e Dsd(K @ s)2

- 32 nemsksEFULS(_w) 4

K_

_m¢) m l+N(q)h\ N(q) /md

× [ i + i + F (r)
s /_ s _ (s) (q)

(307)

where :

2

Dsd = N M
P

+co

z(r) . . e
_F) s) tq) = dz

--CO

l+eZ+a

(308)

a = _ (rE + sh_)
q

K _m = _UL Ikd-ksl

K ® = _u L ks . _ _ is ' KT

Equation (307) involves essentially the same types of integrals as Section

IV except for the fact that the lower limit of q-integral in Equation

(307) is not necessarily equal to zero.



The net amount of power absorbed per s-electron is defined as:

r=(+)

(r)
- P (s---_ d)_

(+) J
(309)

If there are n number of s-electrons per unit volume that are capable
s

of making transitions to the d-band, the power absorbed per unit volume

times As was explained previously, _ of a ferromag-is simply _s Wsd" s

netic metal is not equal to the total effective number (ns) of s-electrons,

but is equal to X(T) times n .
2 s

Upon combining Equation (307) with (309), and after some necessary

mathematical manipulations, we finally obtain:

(Power expenditure per unit volume)

= n W
s sd

I

E e n e e _e N a _ds pgsd

- 2w _ m

r--V2msEFS M K @s (310)

where

Z(w,T) - e_sinh _ _s(_,c_) - (e_-l)2

_ (ee__l)

- (e_-l)2
+ ___a I js(_,_)_

(ea_/- I)\=s/ _4(_,G) + 2_(B,_)_

(311)

; _= _6_ ; _= _K@

where _ and K are exactly the same as J and K defined in Section IV
n n n n

except for the fact that we now have the lower limit of these integrals

different from zero: the bars represent such a cutoff at the lower limit.

Thus, with the definition of the cutoff:



157

C_M=_ K®M (312)

we have:

n

c_

(_,_) :

%

yndy/(eY - e _) (e _- e -y)

(313)

cz

P
K (_,0_) :n J

%

yndy/(eY- e _) (e _- e "y) (e y -i)

and similarly, we define the functions _o(_) and _o(_) such that:
n n

c_

lim ] (_,_) = f5°(_) = _---_o n

K°(C_)n = _----_olim_n (_,cg) = ,

%

yndy/(eY-l) (i-e -y )

yndy/(eY-l)2 (1-e -y )

(314)

The dispersion properties that result from Equations (310) and (311)

will be obtained in the following part of this section. It will be shown

that the dc damping coefficient that is obtained from Equation (310)

agrees exactly with that which was obtained in the theory of the dc con-

ductivity by Wilson (1936, 1938).

C. DAMPING COEFFICIENT AND QUANTUM CORRECTION FACTOR FOR INTERBAND

TRANSITIONS

Calculations of the damping coefficient F (_,_) and _ o(_) for the
ep ep

s---_d transitions are carried out in exactly the same way as in Section

IV, and therefore various arguments pertaining to the particular method

that is employed in the present theory for computing these quantities

shall not be repeated.

Upon using Equation (310) in the relation:
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E2 G (p,c_) = ns Wsd (315)
2

we obtain the following expression for the frequency- and temperature-

dependent damping coefficient, Fep(_,_);

___ _2 N 2 Wd
Fep(P'¢_) =--9_-2 ns _2 p gsdmsEFS M K ®

m_ _i ms _2 _T92 1+
m d /

(316)

where (ns/ns) is the ratio of the effective number of s-electrons which

are capable of making the s---_d transitions over the total effective

number of s-electrons, and for a ferromagnetic metal, may be expressed

generally in the form:

± I i +=
z° _ z "l

(317)JE o

The numerical values of _(T) are available in Table XIV and Table XVl

for Ni,2Fe , Co and others. For a paramagnetic transition metal, _s and
X(T) = . The same is true for a ferromagnetic metal when temperature

is well beyond the Curie temperature e • For a ferromagnetic metal, the
c

quantity of Equation (317) is most important at very low temperatures at

which it is nearly equal to (½). As a result of this, a ferromagnetic

metal has a smaller resistivity at low temperatures than a paranmgnetic

metal if both have the same values for other parameters.

Just as in Section IV, the frequency- and temperature-dependent func-

tion Z(_,_) of Equation (311) has the property:

= z (318)

and is independent of frequency in the limiting cases of p << _ and

>> _, being a slowly varying function of _ for all values of m and T

except for the case of i << p << _. It is easily shown that Z(p,_)

acquires the following forms in the two limiting cases;
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Z(_,e) _{_o (co)+(#)2
i

mdi +--

m s

-o (e) ] ; _ << e, i
Jm

(319)

O_

(l,e) _ e s I- + 2 ex -i

%

2

2

(I + mm_-)

+=/x..x
X 5 ( C_M eX_l

; _ >> e (320)

both of which are independent of _ and hence of _, where J_ (e) and

]_°(e) are given by Equation (314). Upon using Equation (319) in (26),

the dc damping coefficient, Fei(e), is found as

P°P (e) 9_s _s ) _2 Np gsdwd
- _ e_-emsE_M K®

+ md / @ '_

-o /T_ 2 i _o
X J3 (e) + J5 (e)

i +

S

(321)

This agrees exactly with that calculated by Wilson (1938) when we

-take to be much smaller than unity and equate (ns/ns) to unity.

For most of transition metals, m s is actually much smaller than m d and

ignoring the terms containing the factor _ ms _ is well justified: e.g.,

\-_-/ /. \ /I\

for the triad of transition metals, Ni, Pt, and Pd, we have m___i__) - 0 C--_0)
-L,d

_ms _ _ 0 (10-2). Thus, it is sufficient to take Z(_,e) andand for Nb,

\md /

E e p (e) in the form:

~ e_sinh
Z(_,e) - f ".73(_.,e)- _(e_-1)2

(e2_'-l)
(',J2 (p., e) +2_,,?_( p.,cO) ]

(322)
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o (_) 7
Fep

2 2

9= 3 /n _ h Np gsd Wd
S

2 )/=mTF7 M K e
md _ ® / _ "J3°(c_) (323)

C$

+ 2 F x 2 dx q

,j ex-I
C6

M

(324)

According to the results of Section IV, that part of the damping which

originates in the intraband s---+s transitions may be written in the form:

h2 N 2
_3 gss I

o (_)I _ • P --
_ep I s--_s 2 _2 msEF3 M K 0 _5 J_ (_) (325)

i j5 o (_)
= Rss _.-'-_-

Then, for a comparison of the contributions by the s-_ d and s-_ s

transitions, we have the ratio:

0 2

F ep(C_) I s-*d -_ ( n s _ _ mdWd-_ " ®s Ja °(eL)
fe_ (_) ls__>d - _ ns ./ ms //'_ j5°(c_)

(326)

2 _ 2 Since we know that k is of the same order
where we have put gsd gss" s

of magnitude as qo' we have ® _ _ in order of magnitude. At room tempera-
S

ture, the ratio is mostly due to while, at very low temperatures,

the ratio can take on a very large vaSIue. For nickel, the data on the

 m'd?electronic specific heat show that _ 10.

S

By dividing Equation (311 by (319) and ignoring the terms containing

_d_ we find the following as the b-factor for transition metals:

I ,e'-."< )]e_sinh P ]3(p,c_)-p ]2(p,c_) +2 Ke(p,c_)

bep(_'c_) - _ ]_ (c_) (e2P-l)
(327)
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This satisfies the correspondence requirement:

lim

bep (_,c_)= It0----_ 0
(328)

In the near infrared limit of _ >> _, we have:

bep (_'_)= _ I I + 1½ cca_ I _ _.C_M ._a_
°

eC_M_i

(329)

D. DISPERSION PROPERTIES OF TRANSITION METALS

The results of the preceding section allow us to write down the optical

conductivity, o(_,_), in the form,

ne2o - s r s w2 + 2)
S

m s

(330)

where F(_,_) is the sum of the electron-phonon damping coefficient, F

(_,_), which is given by Equation (316), and the damping terms due ep

to the electron-electron collisions, F (_,_), and that due to the im-

purity scattering, F_. Equation (330)e_ncludes only the contribution of
s-electrons; the d-electron contributions as well as the intraband

transitions are neglected. When contributions of both s- and d-electrons

need be considered, Equation (330) may be replaced by the more general

form:

ne2 s/( as nde2 / (ao(_, ) = _ mS f _02 + F ) + m_ Fd _°2 + Fd 2) (331)
S

where the electron-phonon contributions to both Fs and F d include the
intraband transitions as well as s_____d transitions. In general, it is

quite sufficient to take _(_,_) in the form of Equation (330) and ignore
the d-electron contributions as well as the intraband transitions in s-

and d-bands. Therefore, it must henceforth be remembered that whenever
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we speak of F e (_,_) of a transition metal, we mean that the one due to
the s--->d transitions.

The over-all b-factor for the total damping coefficient, F(_,_), is

again defined as:

I_ 0 0 0

_____be p (B, c_) Fee FMb(B,c_) = + F o bee(_,c_)+ F o ? (332)

where bee (_'_)' Fee,O and FMO were discussed in Section V, and:

F o _FO F o o>ep(C_) + (_) += ee FM
(333)

The optical dielectric constant, ¢ (p,_), is obtained from Equation

(330) by using the Kramers-Kronig relation. The relevant mathematical

arguments which were applied in solving the Kramers-Kronig relation in

Section V are just as applicable to transition metals, and thus will not

be repeated here.

With the definition of the temperature-dependent quantity, _ Ca),

such that:

(_) = bep (i_o_,_) = Re bep (iPo _'_) (334)

the optical dielectric constant is given by:

2

l- c (p.,cO = w2 + (-_

2

(_:

4g S

Thus, all relations of Section V should be applicable to transition metals

when we replace bep and De - of Section IV by those given by Equations
(327 and (334), respectively.

The difference between the results of Section IV on non-transition

metals and the results of the present section on transition metals are

exhibited most strongly at low temperatures and in the near infrared.

Some of these properties will be discussed.
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E. SOMELOW-TEMPERATUREANDNEAR-INFRAREDPROPERTIESOFTRANSITION
METALS

For the discussion on low-temperature and near-infrared properties
of transition metals and comparison of these properties with the propec-
ties of non-transition metals, it is convenient to define a constant
R_d given by:

_2 N 2 Qmm--ds_ < + mdins_2 6) 2_ i_ /
9_ a p gsd Kd i { As _

2 _2m JMK_ J
s EF

(336)

Then, the electron-phonon damping coefficient that was obtained in

Equation (316) can be written as:

= n_--_-s_ _ Z (_,_)Fep(_,_) RSd i

(337)

/\ni__ 1 _ J_ (_)
RSd i _o

bep\nsJ
(_,¢)

where b is that given by Equation (327).
ep

First, let us investigate the low-temperature behavior of F°(_).

According to Equation (337), we have:

o(_) RSd d"ns _ i _o~ _ J_ (_)
Fep _ns/ _

In the limit, _ >> i, this becomes:

o _ RSd e _M

ep _

(338)

n_T ) <T_3 : _M = 0
= 6 R sd

o

(339)
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sd
= R

(--_--/ e >0 (340)

where :

2= i

n S

: ferromagnetic metal

: paramagnetic metal

and I--° I is of the order of unity, since k is in general of the same
ks/ S

order as the Debye's cut-off value, q . For most of transition metals,
O

not equal to zero, and hence the equation (340) is to be used. For
t_e_ metals, the electron-phonon damping coefficient vanishes like

- am
e when T is decreased to the absolute zero. The negative exponential

factor was also obtained by Wilson (1938). On the other hand, the damp-

ing contributed by the electron-electron collisions and the impurity

scattering was shown in the previous chapter to be of the form:

(FOe(c_) +FMO) = (Ree (___)2 +FM° ) (34 i)

where R and F. ° are nearly independent of T and R is in general
e _ ' ee

much smm_ler than R .
ep

Therefore, for metals with _ different from zero, the over-all dc
damping coefficient at very low t-emperatures retains only that part which

is given by Equation (341), despite the fact that the electron-phonon

part alone constitutes the most of F°(_) at higher temperatures. This

explains the Te-dependence of resistivity of some transition metals which

has been observed by various experimenters. We summarize the above dis-

cussion by writing down F° as:

F°(c0 _ Ree + r : _M > 0
(342)

The same was found to be true even for a noble metal due to the rapid

decrease, ~ Ts of F o (_) with decrease in temperature, although not as

rapid as in Equatio_P(340).

Whether there is a transition metal with _M = 0 is a question that

is yet to be answered. For such a metal, the s d
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transitions at the Fermi level can take place without a finite mometum
transfer implying that phononswith the average energy of the order of
~ (KT) are capable of stimulating the s---->d transitions even at a very
low temperature. The following discussion based on a rather qualitative
description of the properties of the s- and d-bands suggests that, out
of all transition metals and likewise of all multivalent metals for which
interband transitions are important, there can exist a metal with aM= O,
if the electrons in the outer band (s- band) are neither more nor less
in number than what is required to completely close the empty states of
the inner band (d- band) that is involved in the interband transitionS.
Three transition metals which do satisfy such a condition are the triad,
Ni' Pt' and Pd" For nickel, the three possible configurations are (3d8
4s2), (3d 9 4sl), and (3d 10 4sO). For platinum, they are the configura-

tions,(5d 8 6s2), 5d 9 6sl), and (5d I0 6s0). For palladium, they are the

configurations, (4d 9 5s I) and 4d I0 5s0). In all three metals, the s-

electrons plus the d-electrons amount to i0 electrons which can exactly

close the d-band. Further, it is known that all three metals have an

approximately 0.6 electron per atom in the s-band and the same number

of holes in the d-band. That these metals can have C_M = 0 and hence

kd = ks

may be shown by computing the total number of empty states in the d-band

and the total number of s-electrons from the density-of-states functions

of the two bands. At very low temperature, the Fermi function, (F(E),

is nearly equal to unity, and we have:

E F E

ns =70s (E) dE " nd = f °°d (E) dE

0 EF

(34 3)

0 •

where n is the number of empty states in the d-band and the density-of-

states _unctions, 0 s (E) and 0 d (E), are given by:

/ms y31 
8s (E):

5d (E) = _ / E° - E (344)

Using these in Equation (343), we obtain:
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n = i (_ 2 ms

s _ _ h e

/
", 3 I2 3 /R/_2',, t = K

EF/"

o I /'2md )32 _3
/ = K g2

n d - _ _-----_ (E o- E F)

(345)

Therefore, we find that kd--k
O S

cally equal to nd.

for those metals for which n
S

is identi-

Although the above result may not lead us to a definite conclusion,

due to the use of the simplified forms of ps Od, it does permit us to

suggest that, if there is any metal which has 0M = 0, the triad of trans-

ition metals N., P , and Pd' are the most likely ones. In fact, accord-
ing to the observations by MacDonald and Mendelssohn (1950), the low-

temperature resistivity of platinum has been interpreted as having a Te-

dependence on temperature, which, if real, may be attributed to F o (_).

On the other hand, if platinum has _M = 0 so that equation (339) eels
applicable, the low-temperature resistivity should have both T2- and Ts-

dependence on temperature coming from F o and F o, respectively. The
ee ep

total damping coefficient will then be gzven by:

o (co) _ 6 RSd Q+)3 (__)efet + R + (346)ee FM°

where the first term is not necessarily much smaller than the rest unless

very near the absolute zero: e.g. at (-_-) = 1/20, weT is have:

F _ Rep I0 -3
ep

Pee _ Ree i0 -3
(347)

and, since R is generally larger than R by a factor of i0 or more
e ee '

F° is not unimportant even at a temperature as low as i0 _ 20°K.
ep

It is not difficult to see that, even if the low-temperature resis-

tivity exhibits the T3- term, a clear distinction between T3- & T2- terms

is not an easy task at low temperatures, and it is thus very possible

that this term has been confused with the T2- term in the past measure-

ments.

Let us investigate the low temperature properties of the quantum-

corrected damping coefficient F (_,_) in the near infrared i.e.
e

>> _ >> i. The low temperatur_ properties of F (_, _) in the spectral
ep
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ranges, _ << _, will be left to the future chapter dealing with the

absorption at very low temperatures.

We saw in the previous chapters that, unlike the dc damping coeffi-

cl'ent,F_ o (_)_ the quantum-corrected damping coefficient maintains a
" e .... . o

relatively large value in the near infrared even at 0 K. It will be shown

that a similar quality is also found in transition metals, and that this

is true for all transition metals regardless of whether COM vanishes or

not provided that a M is of a much smaller order of magnitude than _.

At very low temperatures, the b-factor for the near infrared spectrum

reduces to:

bep (_,cc) __3J3(c0 _3 [ i
(348)

When we use this in Equation (337), we obtain:

ep (g,c0 / ns _ i RSd
\ ns /o- _ i - _ !• J

• R sd--- : F. M.

i R sd_ : P.M. (349)
5

which is independent of both _ and T, where we have taken @M << 0. Thus,

unlike F o (_), the negative exponential factor, e-aM, cancels out and

the elec_on-phonon scattering makes large contribution even at very low

temperatures. This implies further that the contributions to the damp-

ing by the electron-electron collisions and impurity scattering will be

important at very low temperatures in the near infrared only if they are

important at higher temperatures. When these two processes need be con-

sidered, we use the formula:

_o (g'_) = Fep° _ep + Fee (_) + FM°

=_ --c_i× (0) R sd + Ree _i + FM o

: c_ >> I (350)
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while _o (_), which appears in e (_,cc), becomes

T
_o (c_) _ Ree _ + FM °

_M °
= : T= O'_K (351)

In Equation (350),3 o has a weak T e- dependence while in Equation

(351), _o(C_) has a relatively strong T e -dependence on temperature,

since, in general, R >> R _ _o. As a specific example, let use e
investigate the near _nfrare_ absb'rptivity at very low temperature.

According to Section V, the bulk absorptivity, %, is given by:

m s

%_J_ _o Ga
S

(352)

where :

_ee

Oe (35 3)
_ee - I.49 Re---_

and_o is given by Equation (350). In general Rsd >> R and when' ee'

this is true _ is also much larger than _ so that _ G _ i X (0) R sd
' ee o o o _

for a reasonably pure sample. Thus the total near infrared absorptivity,
A, of a transition metal is:

Rsd 3 VFA _ _i X (0) +
3

C
O

(354)

where the second term is the absorption due to the anomalous skin effect

and vF = 10 -3 _ 10-2 C. The numerical value of Rsd can be determined

from the room temperature value of F o (_) since the complete temperature-
ep

dependence i_ specified in Equation (238), and _o (_) is easily found
from the optical data and also from dc electric m_asurements.

The temperature-dependence characteristics that have been discussed
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o

TABLE IX. NUMERICAL VALUES OF J5 ( _ )

i =T

0

0.05

0. 076923

0. i

0. 125

0. 16667

0.2

O. 25

0. 33333

0.5

0. 66667

0. 83333

1

i. 25

1.52

124. 43

124. 42

123. 14

116. 38

i0 i.48

70. 873

50. 263

29. 488

12. 771

3. 2293

I. 1199

0. 47907

0. 23662

0. 098845

0. 0451
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TABLEX. TEMPERATURE-DEPENDENCEOFDAMPINGCOEFFICIENTIN GOLD

(G-- 175°K )

T

(°K)

273

87.43

78.86

57.8

20.4

18.9

14. 3

12.1

ii.I

4.2

o

_ep (T) / Fep (273 °)

calculated

1

0. 2645

O. 2276

O. 1356

O. 00604

0. 00346

0. 00117

O. 00051

0. 00033

3 x 10 -6

r(T) / _ (273 °)

observed

1

0. 2551

O. 2187

O. 1314

0. 0058

O. 0035

O.00137

O. 00048

O. 00030

3 x 10 -6
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TABLE XII

T(°K)

ec

0

0. i

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.85

0.9

0.95

i.00

1

0.996

0.99

O. 975

0.95

0.93

O. 90

0.85

0.77

0.70

0.61

0.46

0

F
e

½ X (T)

O. 500

0. 502

0. 505

0.512

O. 525

O. 535

O. 550

0.575

0. 615

0. 650

O. 695

0.770

I.000

Co_

I

0. 996*

0.99

O. 98

O. 96

O. 94

0. 90

0.83

0.73

0.66

0.56

0.40

0

N°

1

_X

0. 500

0. 502

0. 505

O. 510

0.520

0.530

0.550

O. 585

O. 635

0.670

0. 720

0. 800

i. 000

J

I

i.000

i.000

0. 997

0. 983

O. 958

O. 907

O. 829

O. 710

O. 630

0. 525

O. 380

0

=½

½

(theory)

X (T)

0. 500

0. 500

O. 500

O. 501

O. 508

0.521

O. 546

O. 585

O. 645

O. 685

0. 737

O. 810

i.000

* For N. only
l

Computed from the Am. Inst. Phys. Hdb.
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TABLE XIV

Elements Curie Point

O

@c (°C) (293°K)

i i[ Z _ v ]
2X=_ i + o

(293OK) o

Fe 770 221. 9 218.0 0. 509

Fo 1131 162.5 161 O. 505

Ni 358 57.50 54. 39 O. 527

Gd 16 253.5 0 1.000

Dy - 168 ..... 0 i. 00 (0)
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here are to be used in various dispersion formulas that are given in

Section V in applying the present theory to transition metals. It must

be kept in mind that some transition metals exhibit resonances at relatively

long wavelengths compared with noble metals, and when this happens the

resonance contribution must be substracted out of the dispersion curves,

by use of the Kramers-Kronig relation or by other means, before the theory

is applied. A method of substracting the contribution of the bound elec-

trons to the infrared dispersion was illustrated in Section III where we

used the Kramers-Kronig relation. When the resonance band is narrow and

clearly distinguishable, separation of the free-electron part of dispersion

becomes a trivial matter.

SECTION VII. THEORY APPLIED TO OPTICAL DATA

A. CALCULATION OF MICROSCOPIC PARAmeTERS

The microscopic parameters that define the optical dispersion proper-

ties may be calculated from the best-fit theoretical curves of either the

optical constants, (n,k) or (o,e). In general, it is much simpler to use

the data on (c,c) rather than (n,k) since the general formulas for the

former are less complicated than the latter. If the optical data are

available in the spectral range, _2 i2 << _2 << _2 which, for many
0 _ 0 O'

metals, corresponds to Ik < X < i0 k, it is convenient to use the best-

fit theoretical curves of (n,k). In this part of the spectrum, the theo-

retical formula for k is exactly the same as that given by the classical

Drude theory while the formula for n can differ substantially from the

classical formula namely:

(355)

n = 2
_2 C

= I/2 o _ o
g.)2 '

ee

: _ = i _' ° b _ Y °o ep ep ee

(356)
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It is seen that k describes a straight line when it is plotted against
X, while n describes a straight line when it is plotted against X2. The
critical frequency, _ , is obtained from Equation (355) and when this is
used in Equation (356_, the numerical values of _ and _ follow immedi-

o .ee . o
ately. The value of the electron-electron damping coeff_czenn, F , is

ee
obtained from 9 when we use the relation:

ee

= f o { R

_ee _ 2_ / ee \ 2_ / ee

!3 : I/KT (357)

_e = l/_:_

where R is a constant which is independent of _ and T. The values of
ee

o and hence R can be determined from Equation (355) and (356) only
Fep' ep

when we neglect r o compared with F ° and f ° This procedure is valid
_M ee ep"

for metals which are substantially free of impurities, provided that the

temperature is not too low. The method of determing the "Restwiderstand"

o from the low-temperature optical data will be explained in a
term,± M'

later part of this section.

Once the values of _0o, Rep, and Ree are determined, we can predict

the values of (n,k) and other dispersion quantities at any other tempera-

ture and frequency.

It is important to note that, in fitting Equation (355) to the corre-

sponding experimental curve, the extrapolated straight line must pass

through the origin at k = O, and that, when Equation (356) is plotted

against X 2, the non-zero value of n defined by the intersection of the

straight line at X = O is entirely due to the Umklapp processes which

give rise to a non-zero contribution of the electron-electron collisions.

The remarkable qualities of Equations (355) and (356) are clearly

demonstrated in FIGURES 20 to 23 for gold and copper, and in FIGURES 27

to 30 for the multivalent aluminum.

For many metals, it is not easy to identify the portion of the spectrum

where Equations (355) and (356) are applicable, and the general equations

of Section V need be used. In this case, it is more convenient to obtain

the best-fit theoretical curves of (o,c) than of (n,k) using the equations:
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o- o ( 02 )
4_ O

/

where _o and _o are independent of a_.

(358)

The best-fit theoretical curves of c and t-c] are shown in FIGURE

19, and FIGURES 24 to 26, and FIGURES 31 to 36 for i0 different metals

including the noble, multivalent, and transition metals. In particular,

the multivalent metal, aluminum, is examined at two different temperatures,

78 ° K and 295 ° K.

Table XV shows the numerical values of various microscopic parameters

that are calculated from FIGURES 19 to 36. These parameters are suffi_

cient to enable us to calculate the dc electric properties and the disper-

sion properties at different spectral and temperature ranges.

The dc electrical conductivity, c , is calculated from the formulas:
O

6_2

o 1
o = 7f_
o Fo

Fo = P o + p o + F o (359)
ep ee M

where PM° may be ignored at ordinary temperature. The theoretical and

measured values of so are shown in Table XIII for a variety of metals.

For most of the metals that are examined, the theoretically calculated

values agree well with the electrically measured values. Note, in par-

ticular, that the values for Ni and AI have been improved considerably

from the old values of Table VI. In Table XIII, some of the measured

values of co are not obtained from the samples on which the optical data

are available. For an accurate comparison between the calculated and

measured values of So, both the optical and electrical measurements must

be made on the same sample, since,as was explained in Section III, the

optical and electric properties vary depending on the manner in which

the metallic surface is prepared. For instance, most of the available

optical data are obtained from vacuum evaporated surfaces whicle the

handbook values of o o are for bulk samples. Beattie and Conn (1955) ob-

tained the optical data for several metals, each with several different

surface preparations. The variation in the values of the electrical and

optical properties among differently prepared metal surfaces was quite
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substantial.

B. CALCULATIONOFABSORPTIVITY

With the help of the microscopic parameters that are given in Table
XV, the absorptivity is calculated from the formula:

3 WF
A = -- (360)s 4 C

A = AB +A s

where As is the absorptivity due to the diffuse surface scattering (Dingle,
1953). The skin absorption is important when the meanfree path given
by:

= wF TR (361)

is much larger than the skin depth than the skin depth 8 , whic_ was
given in Section III, where _R' unlike the dc relaxationStime TR , is
now given by:

i = i + F ° X _ b -I) (362)
_R _--_ ep ep

According to the original theory of the anomalousskin effect, the dc
relaxation time _o was used in Equation (361) so that, at low tempera-' R '
=ures, _ can be substantially larger than 8s due to the rapid decrease
F° with decrease in temperature.

According to the present theory, however, _Rdoes not increase so
fast as might have been expected from the theory of electric conduction,

since a rapid increase of bep, according to _ ( G )5\ T / I , completely
jo
5
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counteracts the rapid decrease of F o
ep'

low-temperature value:

J )
i _ _ i R + FM° :

I0 ep
R

This is to be compared with:

until _R reaches the constant

T _, O°K (363)

i _F o : T _ O°K (364)

_= M
R

which results when F o is used in place of F ° As the result of this,
ep

the absorption due to the anomalous skin effects is not so .significant

in the present theory as was suggested in the original theories of Reuter

and Sondheimer (1948) and Dingle (1953). For transition metals and also

for multivalent metals for which interband transitions are predominant,

the relation in Equation (363) isreplaced by:

R s--+d oI _ + ? M /'

_R

(365)

o upon
The constant, Rep, can be obtained from the known values of Fep

using the relation:

O O
F = R i j, (_) (366)

ep ep _5

for nontransition metals, and the relation:

o R sd 1 jo= ----/ (_) (367)
Fep ep _ _

for transition metals, where the functions J_ and jo are available in
O

the appendix in calculable forms: the numerical values of J5 (_) are

computed in Tables Xl and XII. Since Rep is usually I--- _ 1 times as
10

O

large as Fep at room temperature, _R for both transition and nontransition

metals at very low temperatures and in the near infrared is given by:

7R _ (i0 _ I0 e) x _R (300°K) (368)
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which implies that the meanfree path, i, increases by a factor of i0
i00 when T is lowered from room temperature to the absolute zero. This
is in mark contrast to the low-temperature electrical properties and
also to the existing theories of optical dispersion.

The absorptivity values that are computed from (360) are presented
in Figures 39 to 43 and are comparedwith the experimental curves for the
liquid metals, Hg and Ga, and for the transition metals, Pt, Ti, and Ir.
The contributions by the Umklappprocesses are indicated in FIGURES40
to 43. Oneglance at these curves is sufficient to show that the transi-
tion metals with predominantly interband transitions exhibit a markedly
greater contributions of the Umklappprocesses than other metals. Table
VII shows the theoretical values of the low-temperature (4.2°K) and
near-infrared (I ~ 2_) absorptivity of eleven different metals. The
theoretical values for Cu and Ag are in agreement with the experimental
alues of Biondi (1956) within _ 2 percent. Unfortunately, the experi-

mental values are as yet unavailable on other metals, and no further
comparison is possible. The relative importance of the bulk absorption
as comparedwith the skin absorption is represented by computing the per

cent value of _= _I A _s . It is seen that for all the metals
7--J

that are studied, the bulk absorption ranges from 20 percent for Ag to

nearly I00 percent of the total absorption. In general, the bulk absorp-

tion is relatively more pronounced in multivalent and transition metals

than in noble metals. It is hardly necessary to mention that, according

to the classical theory, there should be almost'no bulk contribution to

the low-temperature absorption, and that the remarkable features demon-

strated in Table II are entirely the consequence of the quantum correction

factor, b , of the present theory.
ep

C. CALCULATIONS OF DISPERSION PROPERTIES AT DIFFERENT TEMPERATURES

We have already demonstrated how the microscopic parameters that are

computed from the room temperature optical data can be used to compute

absorptivity at very low temperatures. We may likewise calculate and hence

predict the values of any dispersion property at different temperatures

when the values of the fundamental microscopic parameters are available

from the optical data at a particular temperature.

Before we proceed with numerical applications, we need to establish

the validity of the T-dependence that is formulated in the present theory.

The temperature-dependence of F o (_) is well established and has been
ee

popularly used in the past. Therefore, we need to concern ourselves only
o Ca),

with the T-dependence of the electron-phonon damping coefficient, Fep
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and the quantum-factor, bep (_,_). Weexplained previously that the
T-dependenceof Fe_ (_) of the present theory is entirely consistent with
the T-dependenceof the well-known Gruneisen formula and also with that
which is derived in Wilson's theory of electric conduction in metals, and
that Gruneisen's formula is in excellent agreementwith the observed
heat capacity data: e.g., see FIGURE15a and b. Although this enables
us to conclude that our formula for Fe_ (_) is valid, we have yet to estab-
!ish the validity of the T-dependencebep (_,_), or equivalently of
b (_)
ep

For this purpose, we shall use the optical data on aluminum which

are obtained at two widely separated temperatures, 78°K and 295°K, by

Golovashkinetal (1960). We saw previously that the theoretical curves

for n,k, j, and (l-c) at the two temperatures agree well with the corre-

sponding experimental curves,and that the calculated value of Go at 295°K

also agrees with the electrically measured value. Table XV shows further

that the values of the temperature-independent parameters which are cal-

culated from the two separate data agree with each other within _ 5 per-

cent Therefore, we only need to show that the value of F o (78OK),
• ep

which is obtained from the data at 78°K by using bep (78°K) = (5.94),

reproduces successfully the value of Fe_ (295_K_ whlch is obtained inde-

pendently from the optical data at 295_ using b (295°K) = 1.22. From

the optical data, we have: ep

o _78OK) = 1.41 x l0 is sec -i
Fep

o (295OK) = 1.12 x i0 i4 sec -i
Fep

each of which has been obtained independently with ® = 375°K.

other hand, Table X gives us:

(369)

On the

J? (295°K) = 0.5

so that:

J_ (78°K) = 50

O

° (295°K):F ° (78°K)x( 295"_5 ( Js (295°K)Fep ep 78 jo (78K)

= 1.17 x i014 sec i

(370)
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Comparing this with the value, ].12x10 i4 sec _l of Equation (369), we
find that the two values agree within 5 percent. Since use of _ (_)
was essential in obtaining the values of Equation (369) optical _ta,
the good agreement betweenEquations (369) and (370) automatically estab-
lishes the validity of the temperature-dependence of bep"

Nowthat we have verified experimentally the temperature-dependence
of the dispersion formulas, we are ready to predict various dispersion
properties at any arbitrary temperature. As an illustration, we shall
calculate the near infrared absorptivity and the optical constants, (n,k),
of aluminum at very low temperatures (4 10°K), 375=K, 470°K' and 570°K
in addition to the values at 78°K and 295°K which are already available
from the optical data of Golov_shkin et al t1960).

In the spectral range defined by:

o.8_< x< 3.5_

we use the formula:

AB - 2 _
60 0 C,

0

 2tR ep
O

I j=o (c_) (cg) + R _ + (371)
c_5 bep ee _ _ee

In the same spectral range, the formula for the index of refraction is:

i O _ + '1

n - 2 _ L o _ee I (372)

= ¼ Q_-_° _e A B

where Equation (371) is to be used for AB, and K is nearly independent

of temperature and is _ __..._)C°o .

Upon using the numerical values of various parameters given in Table

XV and X, we obtain:

R = 7.0 x i012 sec i
ee
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R
ep

Q
ee

= 7.7 x i0 _4 sec i

= 1.34 x I016 sec -l

and thus Equation (371) becomes:

AB (0.0103) lo ao (_) _ (_) t 3.51 x 10
= _ ep X 2

(373)

The values of A = (AB+As) are plotted at the temperatures, T < IO°K,

78 K, 295 K 375 K, 470 K, and 570 K in FIGURES 37 and 38. The values of

n are plotted in FIGURE 39. The absorptivity describes a straight line

lotted against I 1 _ while n describes a straight line as a funct-whenp
ion of X 2. In obtaining the values of A, we have used AS=0.004 as the
skin absorptivity.

It should be noted that the Un_lapp processes were completely absent,

the second term of Equation (373) would vanish and A B would be independent

of X. The curves of FIGURE 37 are then replaced by a family of horizontal

lines, while the straight lines of FIGURE 39 for n should all pass through

the origin.

Finally, it may be said that calculations similar to that which has

been done on aluminum can be made on any other metal for which optical

data are available. This applies to all the metals that have been in-

vestigated in the present chapter except for solid bismuth. The optical

data on bismuth show extremely anomalous behavior, as shown by the curves

of _ and (l-e) in FIGURE 44. Whether the anomaly is due to oxides or

due to some peculiar properties of the lattice is yet to be determined.

_ile both the present and all the existing theories completely fail to

explain the peculiar dispersion properties of solid bismuth that are ob-

served by _rkov and Khaikin (1960), Table.VIII shows that the liquid

bismuth is explained even by the classical Drude theory (Kent, 1919),

and hence by the present theory also.

D. DETERMINATION OF IMPURITY CONTRIBUTIONS

Unlike the dc electrical properties, the optical dispersion properties

are affected very little by the presence of a small amount of impurities

(i.e.,_lO -4 or less in concentration), except at the far infrared and low
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temperatures. It is well knownthat the impurity contributions give rise
to the finite residual resistance important at very low temperatures.
The pronounced effect of the impurity scattering at very low temperature
is attributed to the fact that the damping coefficients, N °(¢0 and F o

2 e . ee
vanish with _ T _- (or _ T s for transition metals) and-T , r_spectlvely,

O

when T is decreased to the neighborhood of the absolute zero, while FH ,

being independent of temperature, maintains its constant value even at

O°K.

In the present theory, however, the damping coefficients, F o and

F o appear multiplied by the respective quantum correction factors, bep
ee'

(_,T) and b (u_), which, at very low temperatures and in the near infra-
ee

red, increase exactly as fast as the rate at which F o and F o decrease

eewith decrease in T. As a result, the over-all dampi coefflcient,

(t:,T), manages to maintain a constant but relatively large value even

at 0_K. For this reason, it will be senseless to attempt to determine

the value of FMO from a near infrared optical data, unless the concen-

tration of impurities is sufficiently large as to make l"x[° comparable
with R or R . It was shown in Section V that, unlike _ , (l-c) depends

on theee_0-inde_ndent damping Ob such that:

2

_0 (374)

I-_ _ _0e + (FMo)_

at very low temperatures. Unless the wavelength is very long, however,

this is not going to improve the situation since in most of the infrared

and near infrared regions of spectrum, Equation (374) is replaced by

-- LO

Therefore, it is quite clear that any attempt to determine P o can
- M

be made only when the optical data are available in the far infrared

region, 1 << _ h _ < a_. In this case, Equation (374) is useful, provided

that _c is not much larger than FH°.

At very low temperatures (T < 10°K) and in the far infrared, the

optical quantity which is measured with relative ease is the absorptivity,

A, or the reflectivity, R =(I-A). The value of F o can then be determined

from the formulas that are given in Section VIII. M For many metals, the

values of F o F o and co are available from the room temperature data

with an acc_acye_f I0 p_rcent or less, so that if A is measured up to

< i0 percent, the value of FM° can be determined up _o _ i0 percent. The

_ptical estimation of FHO can be useful when a direct electrical measure-
ment is difficult.

When the value of FM° is available, the impurity concentration N M
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can be estimated from the complete expression for FM° (Gurzhi, 1959) or
qualitatively from:

which gives us the order-of-magnitude estimation, where (_F TM) is the
mean free path of the electron-impurity collisions.

SECTION VIII. BULK ABSORPTION AT VERY LOW TEMPERATURES

A. NOR_IAL >_TALS AT VERY LOW TEMPERATURES

It was shown in the preceding chapters that the bulk absorptivity,

AB, of a normal metal (i.e., non-superconducting) retains a finite non-
zero value even at O°K in the spectral range given by D >> c_ >> i, and

vanishes at O K, for a pure metal in the limit _0---_0. It was also shown

that the bulk absorptivity at O:K, which we shall call the "zero-point

bulk absorptivity," in the near infrared is independent of . aside from

the Umklapp term.

Specifically, we obtained the following formulas for the bulk absorp-

tivity in the high frequency part of the infrared:

G i -- +-- _ ....
:! O /"

and:

: :0 > q (I_ > a_)
O

AB _ ___2 _o _
O

>> >> )

(376)

(377)

where:

eb p(_,_)_

bep(_) / _ F° +poee M

= " 1 + Cd2- N

o _ee
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o ee

(378)

and (G - l) and (G - i) can differ from zero only when the Umklapp

processes are present.

It is the purpose of the present work to compute the absorptivity,

AB, at very low temperatures in the spectral ranges defined by:

(condition i) _ >> _ >> 1

(condition ii) _ >> #, b _ i (379)

both of which are in the far infrared. At T = 0°K, the condition (i)

applies for practically all frequency values of infrared, and the calcula-

ted value of A B would then represent the far infrared zero-point bulk

absorptivity.

It was explained in Section V that the generalized Hagen-Rubens

formula :

O

repA B = 2 1 + o (bep - i) (380)
co F _1

applies in the far infrared when the temperature is not too low. We re-

call that Equation (380) was obtained by taking ,)2 <<_2 _2
O' O"

At very low temperatures, however, .2 may not be necessarily smaller

than _2 and _2 in the far infrared since _ being independent of _0,
-0 O ' O _

decrease in T and 9 2 likewise may have a small value if the quantum

correction factor, _ (_, cg), does not counteract sufficiently the rapid

decrease of F o (cc)ePwith decrease in T.
ep

Therefore, it is quite clearly the primary task of the present work

to investigate the o_-dependence of b (_,c_) in the spectral ranges of
ep

Equation (379) and also to specify the order of magnitude of FM° relative

to the values of m, in these spectral ranges. We shall first investigate

the _J-dependence of b (_L,c_) for _ >> 1 and T _ 0°K. We shall, for the
ep

sake of generality, calculate it for both D > c¢ and _ < c¢.

Upon using various formulas for J (p_,c_) and K (D,c0 in the results
n n

of Sections IV, V, and VI, we obtain the following expressions for b
ep
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(D,_) for both transition and nontransition metals, _,_:

bep (B,c0 - i0 1 6

b (la ,G)
ep

for nontransition metals, and B > _:

bep (_'_) - 6 1 4

(381)

(382)

(383)

bep (_,G) _ __ / o24 J3 (_) (384)

for transition metals, where, for the sake of convenience, we have taken

_E to be zero.

Thus, the electron-phonon damping coefficient of nontransition metals

is given by:

R

Eep (bL c0 ep ( 1 5 K_ )' I0 6 45c0 : _ > c_ (385)

ep : _ < _ (386)
60

For transition metals with _E _ 0, we have:

sd RSd( 3 K_ )i_ep (_,c0 _ 6 1 -"4 4_c0 : _ > _ (387)

RSd (4_oo) a24 KQ : _ < c_ (388)
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It must be rememberedthat, for a ferromagnetic metal, Equations
(387) and (388) must be multiplied by 1/2 on the R.H.S. as the correction
for the residual magnetization. Equations (383), (384), (387), and (388)
will also apply to those transition metals which have _E > 0 provided that

_E is sufficiently smaller than _. In this case, Equations (384) and
(388) are multiplied by (i- --_E ) so that sd(B,_) has non-zero values
for _w > K_E only. _ ep

For both types of metals, the electron-electron damping coefficient
is given by:

1 £ \e
Fee (_'_) _ _ Ree k_J (389)

In order to write down the formulas for the bulk absorptivity, we

need to compare the magnitudes of toe with gs, _e : i.e. to find out which
of the Equations (376) and (380) is applicable. °

At T $ 10°K, _ = i corresponds to the values of w which is of the

order of _ I0 le sec -i We are therefore interested in the spectral range

given by:

K6 _ 10 ±3 _ 1014 sec -l (390)i0 la < _ <<

It was shown in preceding sections that Rep (and R_) R and PM ° (for' ee

a "pure" metal) have typical values of the order 1013 ~ i014, 108 ~ i0 i°,

and < 10 I° , respectively. The Debye temperature is generally of the

order of several hundered °K corresponding to w of I0 Is _ i0 14 sec-i

Therefore, for w--_ i012 sec-i and _ = i00 °K we have:

we >> _ s (391)
0

The same is then true for _ e since it contains no w-dependence and:
O

_o _ ( PM + l_e°) << w = 1012 sec ± (392)

This implies that Equation (376) is to be used for evaluating the absorp-

tivity in the spectral range of w > i012 sec -i and T < 10°K.
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Thus, we have the following formulas for the bulk absorptivity of the

noble metals and the transition metals, respectively:

_>cc:

_ i--- +_RAB 2 ep 5 K@_ i0 6 _ / ee
o

+ FM

(393)

_<c6:

AB 2 ep _w \s +_ 60 Kq .... _ KO
O

__._2 + FMO_
(394)

for nontranstion metals, and:

ASd 2 iX(0) RSd _ 3 K@ _ 1 / _c0_e o_B _ co 2 6 i 4 _co + _ Ree _-_-_/'_ + FM
o

(395)

41° 2T _--_/ + 4-_ Ree _-_/' + f M° (396)

for transition metals, where X(0)= I for ferronmgnetic metals and X(0)=2

for paramagnetic metals.

Although R is generally smaller than R by a large factor, contri-
ee

butions of the electron-electron collisions _ Equations (393) _ (396)

can be substantially large compared with the electron-phonon term because

smaller power of (-_ in the electron-electron term. This isof the
\---j

even more true if Equations (395) and (396), _E is very large. The first

terms inside the braces of Equations (395) and (396) must be equated to

zero for _ < K_E when _E is not zero so that the only _-dependence appears

in the Umklapp term.

Now let us investigate the case of _ _ 1 and:
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__ _ KT _ 10±e
_ ._......< sec I (397)

This spectral range is of interest when one wishes to compare the absorp-

tion of a normal metal since the superconducting energy gap is generally

of the order of several °K in temperature and thus, _ < i012 sec -I For

co _ l0 II sec -l we will in general have _ _c0_ < 10- 2 for _. > 100°K.

This implies that we will have FM° as the most dominant term in both

_o and _o when the metal is not completely free of impurities. However,

slnce we saw previously that FM° < I0 I° sec -± for the most of the so-

called "pure" metals samples, we still have:

<. _'_° _I ' _--_'<_ _ -i01 (398)

so that Equation (376) is again applicable.

Therefore, we shall henceforth consider Equation (376) as the general

formula for bulk absorptivity which is applicable in the far infrared at

very low temperatures regardless of whether _ >> 1 or _ _ I, unless a

metal has an exceptionally large value of F o. When the sample has a

Hagen-Rubens formula (Equation 380) shouldlarge F_, > I012 sec_ l, say, the M

be used with F°(_) equated to FM°.

K
n

For _ >> _ and B _ i, we have the following formulas for Jn(_,_ ) and

(_,_):_

J (_'c0 _ 2 _ J° (c0 + _a n(n-l)J°M n s, n-a (c0 +..._
n e2__ I

e e-i2 _ K° (c_) + _3 n(n-l) K° (c0 +"''_n s.
K (_,c0 _
n , n-a

(399)

where the first terms inside b_p._ are the largest terms. These formulasare to be used in evaluating (_,c_):

e _ sinh_ J5 (_,c0 - _ J4 + 2 K4
bep (_,_) - _ (e2__l)

(4oo)

for nontransition metals, and:
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I_ (e_-l)2 I--bep (_,_) - e_sinh_ (_,c0 _ Je (_,_) + 2
3 e2_-I 2

for transition metals. Then, it is a trivial matter tO write down the

bulk absorptivity since we only need to replace b of Equations (394)
e

(396) by (400) and (401) in the electron-phonon _erm.

Finally, it may be reminded that the values of the parameters R
ep'

R , and R sd which are required for a numerical estimation of Equations
ee ep

(394) _ (396) are to be obtained from the optical data taken at higher

temperatures and alternatively from the dc electrical data. The same

applies to the other parameters.

B. BULK ABSORPTION BY SUPERCONDUCTORS

Compared with what are available on normal metals, very little experi-

mental data are available on the optical and infrared absorption in super-

conductors. Some of the latest measurements are those of Biondi and

Garfunkel (1959) and Richards and Tinkham (1960). These measurements are

designed to determine the superconducting energy gap from the shape of

the observed absorption curves. Specifically, these experiments include

measuring the absorption of the external electromagnetic wave in a super-

conductor relative to that in a normal metal, and the results are embodied

in the curves showing the ratio:

A
S

r = 1-- (402)
sn A

n

where A and A are the absorptivities, at a given frequency and tempera-
n

ture, o_ the superconducting and normal metal, respectively. The normal

state of metal is accomplished by applying a magnetic field parallel to

the surface which is strong enough to reduce the gap to zero. The results

are equivalently expressed in terms of the power absorbed, P and P in-
s n'

stead of the absorptivities, A and A . In the plot of rsn versus _,
S n

for instance, the energy gap is determined by locating the frequency _g

where rsn starts to decrease abruptly: that is, the head of the absorption
tail.

The superconductor differs from the normal state in that the density-

of-states function, _ (E), does not show the continuous distribution

around the Fermi level in the form:

0 (E) = constant x _ (403)
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but possesses discontinuities exhibiting a forbidden region on both sides
of the Fermi level.

In the theory of Bardeen, Cooper and Schrieffer (1957), a certain
minimumenergy is required to produce an excitation from the ground state.
This minimumexcitation energy, or the energy gap, is a central result
of the BCStheory. Existence of the predicted energy gap has been fully
verified, and is by now a popularly accepted fact. According to the
theory of BCS, the density-of-states function, gs(E), of a superconductor
is given by:

Os(E) = On(O) Z : Izl> c

Iz2- c2]
(404)

where _N (0) is the density-of-states function of a normal metal evaluated

at the Fermi level, c is (1/2) of the energy gap Eg which is a function
of temperature, and:

Z = (E - E F) (405)

It is seen that Os(E) increases very sharply at the gap edges, E = (E F ± c).

The energy gap Eg(T) achieves its maximum value Eg(O) at T = O_K and de-

creases to zero as T is increased to Tc, the superconducting transition

temperature. In the region where E < Ef c, all the electrons occur

paired and this part of the band is called the paired band. On the other

hand, the electrons in the region where E > E F ÷ c are unpaired, and this

part of the band is usually referred to as the unpaired band or the "normal"

conduction band which bears no difference from the conduction band of a

normal metal. However, at a temperature T below Tc, most of the electrons

are paired, and very few are available in the unpaired band. Therefore,

most of the absorption will be due to these paired electrons. When the

paired electrons make transitions to the unpaired band, the energy absorbed

must be at least as much as that which is required to overcome the gap

Eg: otherwise, no transition of this type is possible, since electrons

are forbidden in the gap. The BCS density-of-states function, 0 s (E),

is schematically illustrated in FIGURE 47. The typical temperature de-

pendence of Eg is shown in FIGURE 48. For T > Tc, the metal is completely

normal, and absorptivity is fully described by the results obtained in

Table XIII. The curve showing the dependence of E on the magnetic field

H bears a close resemblance to that of FIGURE 48 wren we replace T by H

and T c by a certain critical field strength H c. Thus when H > Hc, the

metal is completely normal even if T < Tc, and the optical properties are
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satisfactorily described by the results obtained in VIII- (A) and also in
the preceding chapters.

The latest theory of optical dispersion in superconductors is due to
_ttis and Bordeen (1958), who calculate the frequency dependenceof the
complex conductivity Os of superconductor on the basis of the BCStheory.
Specifically, they calculate the ratios:

, ' ':Z2 N/

_N being the high frequency conductivity of normal metal and _ the photon

propagation momentum that is involved, and where _i and oe are defined as:

'gS O1 + i o 2 (406)

Based on these results, Richards and Tinkham calculate the quantity:

r = i
sn

from the relations:

Z
S

Z
n

A R
S S

A R
n n

1

\__o '_l + i C2 )
/

(407)

(4o8)

Z = (I + i /3 ) R
n n

R n = Re (Zn) (409)

R s = Re (Zs)

where Z s and Zn are the surface impedance of superconducting and normal

metals, and R s and R n are the respective surface resistance values.

These relations are applicable only in the extreme anomalous limit
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where all the contributions to the absorption and resistance come from
the surface effects in which the electrons absorb photons and collide
with the surface of the metal to conserve energy and momentum. Thus,
they do not include the possible contributions of the bulk where electrons
might absorb photons and emit phonons to conserve energy and momentum.
The bulk contribution of this kind has been found to be significant in
normal metals and was fully discussed theoretically in Section VIII,
paragraph A and preceding sections. That the bulk effects might also be
significant in a superconductor on account of the large electron-phonon
interactions that are present was suggested by Richards and Tinkham (1960)
following the similar suggestion by Holstein (1952) for a normal metal.

Richards and Tinkham compared the experimental absorption-edge curves
for superconducting lead and tin with the curve predicted by the theory
of Mmttis and Bardeen. The comparison showsthat although they agree
qualitatively as far as the shape of the absorption-edge is concerned,
the theoretical values are muchgreater than the measuredvalues. Further,
the theoretical curve tails off muchslower than the observed edge. This
is shownin FIGURE50 where rsn is plotted against the ratio (_/w$) for
Wgreater than wE = (EE/_). At the present, no positive explanatlons
are available on-the discrepancy between the theoretical and experimental
absorption edges shownin FIGURE50. Since the theoretical curve of Mattis
and Bradeen is obtained by considering the anomalous skin effects only,
it might perhaps be worthwhile to follow the suggestion of Richards and
Tinkhamand compute the bulk contributions to the absorptivity. If the
bulk contribution is significant at all, it could very well effect in re-
ducing the theoretical values of Mattis and Bardeen, although it is not
certain as to whether the magnitude of the bulk absoprtion is of the right
order as to bridge the gap between the theory and experiment. For _ < _g,
Schrieffer (1959) derived the formula:

F

L '
i f_ (E i E2 + c2) F (El) - F(E2) dE (410)

[i- rsn]_ he j ±

c [(E_- c2) (E_- ce) ! 5

from the BCS theory assuming a symmetric electron-phonon interaction co-

efficients. This formula applies in the spectral range of ½ w E < w < _g
and differs from zero only for T > O°K. Richards and Tinkham (1960)

checked this formula in the above spectral range and found good agreement

with the experimental absorption data. Equation (410) is plotted in

FIGURE 49. It is shown that rsn rises slowly with increase in _ and is

smaller than unity only by a small fraction. Experimental curves of rsn

shown that the rise of rsn with increase in w is pronounced in some

superconductors such as the transition metals vanadium and indium while

others have a nearly flat rsn for _ < _g. At any rate, it is certain

that the rsn curves do have their peaks, which are very likely to be dis-

continuous because of the discontinuity of Os at the gap edges, at _ = _g
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and tails off rapidly as _ is increased further beyond _g.

In what follows, we shall do our calculations for the bulk absorptivity

only for _ > Wg and at T= 0°K. The theoretical method is essentially the

same as in the preceding sections, and the difference will be in that we

now have to use the new density-of-states function, Ps(E), that is offered

by the BCS theory.

The density-of-states function, Os, and the Fermi function, F(E) de-

fine the number of electrons per unit volume by the relation:

0
n = n_ +n +

= 2 dz + dz Os (z) F (z) ]
i

, j

-oo q-C

: Z = (E -EF) (411)

where n_ is the number of paired electrons per unit volume and n+ is the

number of unpaired electrons per unit volume. At 0°K, we have n+ = 0 and

the second integral vanishes.

Probability per unit time and per unit energy range that an electron

initially at the state, El, makes a transition to the final states in the

range, E2---_(E 2 +dE2) , is given by:

APAE2 _ P (EI-'_Ee) Ps (Ee) [ i F (Ee) ] (412)

and hence:

P(EI) _$dE2 O s (E2) [ i - F (E2)I P (EI-->E 2)
(413)

Similarly, the average of P (El) over all the initial states is given

by:

<p>
_$j_dE I dE 2 5 s (El) P s (E2) F (El) [ i - F (E2)]P(EI-'_Ee)j (414)
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where it is implicit that the surface integrals have already taken care

of the necessary requirements of conservation of energy and momentum.

Upon comparing Equations (413) and (414) with the corresponding equa-

tions for a normal metal in Chapter IV, it is readily shown that the ex-

pression for the power expenditure, Ws, of a superconductor will involve

the function _(r) in the form:
_(s)

@- co

F (r) (q) _ i I / I ex(s) _ 0N(0)2 dx I + eX+a i + e x Ps(X) Os(X+a ) (415)
--O0

where:

A = _ ( rE + s_)
q

We have only F!+_ to consider and other three vanish at T=0°K.

the integrand: _-)
Further,

X

e i

x x+a
I +e i +e

(416)

is different from zero only for those values of _ which satisfies the

inequality:

0 < x < - a (417)

The possible values of x are further restricted due to the presence of the

energy gap: namely, the condition expressed by Equation (404):

Ix + al, Ixl > D e (418)

for the product, Os(X ) Os (x+a), not to vanish. Combination of Equations
(417) and (418) immediately yields the inequality condition:

c < x < - (a+ e)

2 e<- a

The integral (415) thus reduces to the form:

(419)
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-(a÷c)
IYl IY +al.(

F(__ ) (q)_j" dy

c [(Y 2-c2) (Y+a)2-_) ; ½

(420)

For _ < K G, we obtain the following expression for the power expenditure

per unit volume per unit time:

ea g2 N E2
3re P x

Ws _-4
n M (Kr_)6 _02
o

(_0 -Eg) (_cJ-

o c

- c)

IxlIx+ _-_L
2 7' z

(421)

The absorptivity A s is then readily obtained as:

7 m* R Q'_c° ? 5'A _ _e 2 60 K_ ' (I - r sn)s _n

(422)

where:

/ 76 4

(i - rsn) - (4_co)5 . _ ds dx

o 6

-_) I_IIx+_-_l

j...,i

(423)

where R is exactly the same as Rep if we take:

n + n+ n = n (424)

: i.e., all conduction electrons are in the paired band at T _ 0°K,
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Equation (423) is good only when the Umklapp processes and impurity

scattering can be ignored in the normal metal. Otherwise, we must use

the more general formula:

1 - r =
sn

1 x

o

isRee K@, ' Kq 5
I +----_ - + 60 --

R l_c0 R

(_l-Eg) (_&o- _- _)

J6 f 4 x x + _ - 'tiw
(_)_ jr' _ d _ dx

c2 (x + _ - ,_)a_ __2 (425)

The integrals of Equations (417) and (419) are difficult to evaluate

exactly because of the discontinuity in the density-of-states functions.

However, a simple, and perhaps oversimplified, approximation can be

obtained upon noting that the first factor in the integrand represents

the density of states of the initial states and the second factor re-

presents that of the final states, and that, at T = O°K, most transitions

may involve only those initial states which lie at the lower edge of the

gap: i.e.,

El _ E F - _, x _ c (426)

This means that most of the contribution to the integral in Equation (421)

comes from the lower limit of the integral, although the apparent form

of the formula tends to show that the integrand has singularity at the

upper limit as well as at the upper limit as wellas at the lower limit.

The singularity at the upper limit has to do with the fact that most of

the electrons reaching the unpaired band as the result of transitions are

likely to crowd at the upper edge of the gap, where the density-of-states

function is large. We thus have:

F((.)_) (q) _ (_o-E -c) : > + c (427)- q

where it is implicit that the integral in q is to include only those values

which make F _+)" > + c. After some necessary mathematical steps, we find
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that rsn of Equation (423) reduces to the simple formula:

I - r sn
i _ i +e

- _ _w

: _ < K G (428)

The expresions for A s and rsn of a transition metal may be obtained

in the same manner. In particular, for those transition metals which

have _E = O, the formula for rsn which is equivalent to Equation (428)

is readily obtained as:

Eg y_Eg he

I _ rsn _ i _0 -)2 _ i - i_0 / ) (429)

Equations (428) and (429), unfortunately, fail to improve the agree-

ment with the experimental values of FIGURE 50. For a more rigorous

comparison, however, we have to obtain a numerical solution to the com-

plete integral of Equation (423). This would certainly improve the

situation since the assumption that was adopted in obtaining the crude

solutions in Equations (428) and (429), was to restrict absorptive tran-

sitions to only those pairs lying at the edge of the gap, while the com-

plete integral takes into consideration the transitions of any electrons

in the paired band, thus increasing the value of (I - rsn).
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A:

jOn(C0 = /

O

J<< i

APPENDIX A.

CALCULATION OF jo (j)
n

n
x dx/(eX-l) (1-e -x ) : n > 0 (l)

c_

[jot _ n-_
n_] _ ,, x

0

dx_l- ; _+ ]
12 "''

l n-i

<7
n-I

7 i n+l
C_ +...

- "i2 n+l

,(2)

B: (7>> i

jo(c 0 _ n
It

oo n-I

,,f' x dx

' ex - i
]

O

oo

m=l

(3)

e. g.

jo(_) = 124.4
5

C: General Calculation

x n /,C_ n-i -x n
o( f_e _ dx _ e d_

- n / -X 67
J _) = / (e x - l) m j (1 - e ) e -i

0 0

The integral on the right-hand side can be written:

_ n-i -x /' n-i -xx e dx = x e

o i - e 'J -x
o 1 - e

oo n-i -x

dx- /' x e dx

' / i - e -x
a_

(4)

(5)
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The definite integral can be evaluated by the series:

oo oo

j .-_-x_x:,, I(m n)x e tn - i_ , -

o I - e -x
m = 3_

(6)

e.g.

= 24.8861 ; n = 5

The indefinite integral can also be written as a series:

n

j' n-, -_ _ n_rT (mr n_)_,x e dx = _(n- i) '. a e
• -x (n-r) ' L
a 1 - e ' "

r=l m=l

Substitute Equations (5), (6) and (7) into Equation (4):
oo n co

E _ (m-_ 1 I _ ma) -i
jo(a) = n' - n'. an-r r e
n " /' (n-r) '

m=l r=l " m=l

_
D: jo

s(_)

From Equation (8), we compute the numerical values of J°(a).

small values of _: 5

(7)

(8)

For

i Jg(a) = B o + Bi a2 + BSI 4 + B3CX 6 + B4(X8 + BSKXi'°+
e • •

(9)
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Bo = 0. 25000000

Bz = -.01388889

B2 = 0. 00052083

B3 = -.00001653

B4 = 0.00000096

Bs = -.00000003

This series is good to 8 places for _ = i_ and its accuracy
diminishes thereafter.

For somewhatlarger values of _ let

i
u=_

Then:

i j_(_) = Do + DlU2 + Dmu4+ D3u6 + + Dgul8

(1o)

(11)

D o = 0.250000

D I = -.125000

D 2 = 0.042188

D3 = -.012054

D 4 = 0.003164

D 5 = -.000792

D 6 = 0.000193

D 7 = -.000046

D 8 = 0.000011

D 9 = -.000003

(12)
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This series is good for _ < 2_ _nd diverges for _ > 2_ j and should

not be used for values of _ much larger than 3 so that the last terms

contribute significantly.
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APPENDIXB.

CALCULATIONOFbep (_)

In the limit of h_ >> K®_ the quantumcorrection factor bep(_3_)
becomes:

_ep(¢0 = + _- /2 + °(5
e_- i

(1)

With the help of Appendix I_ we evaluate bep(_ ) numerically for
_ < 2_.

For small values of (_:

i

bep (_) - 5 +
A o + Ai_ 2 + A3 4 + A3_ 6 + A4_ 8

B o + BI_ 2 + Ba_ + B3_ 6 + B4(_ 8 + B5 Gl°
(2)

where:

A o = 0. 20000000

A 1 = 0.01666667

A 2 = -.00027778

A 3 = 0.00000661

A 4 = -.00000017

(3)

and the B-series are the same as in Equation (9).

The A series are the quantity:

5 _/2+

oo

_ m
m=o

(4)

: _<i
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For somewhatlarger values of _ let

Then:

u = 1/3 ,_.

bep (L_) - 5 +
C o + C_u 2 + C2 u4 + Ce ue + ... + Csu z6

D O + Dlu p + D_u 4 + Dsu 6 + ... + Deu Is

: 5< 2_

(5)

oo

) C m u - /2 +
5 e_- i

m:o

(6)

C O = O. 200000

C I = O. 150000

C 2 = -. 022500

C3 = 0.004821

C 4 = -. 001085 (7)

C s = O. 000247

C 6 = -. 000056

C v = 0.000013

C s = -. 000003

and the D-series are the same as in Equation (Ii).

Similarly_ it can be evaluated for _ > 2_ when the formulate of

Appendix are used.

For _ e 17_ for instance, we obtain:

bep (_) = + (8)
/
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APPENDIX C.

INTEGRALS Jn(_¢ 0 and Kn(_C_ )

A: General Expression for Jn(_C_ )

Jn(_) = / x n d x

o

e_ <e _L - e-X_ :

We will use the relation:

n> 0 (1)

(eX_><eX+_0
C_

' m+lx m dx _ x

x
o e -i m +i

= e-X _e 1(e__ x_

i

x_ 1e o

+ i J°+zm (,4)
m+l

x+a%1
e -i

where:

Then; for n > 0:

Jn(_, _) -

m+l-] [o : m > o

:x_ 1 x=o • m = o

l n-m _ -(__}/) m+l1

e a_L-1 m=o/J m+i _e _-_ - i

+ (- i) n-m+l (<f-_i)m+i i) m+i { 1 m+i
<i+_ - (- ep+ (-i) n _______ (2)

e - i e_- i

+ Jom+l (Q>P)-I-(-1)n-m+l °Jm+l (O_+p)- (_l) m+@ {l+(_ l) n+l} m+iJ° (_i
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B- General expression for Kn (_{_):

Kn(_ ) =,/ ×n d x _ e

o

(3)

We split the three factors as follows:

1 e

_X-e_) _e_-e -x)

-x
i e

e (e x- i) 1

E i i ,]ex-_- I ex+_i- i

11 iex- 1 ex±_-

i]x
e

and use the relation:

' m m+lx dx - x 1
' x
o e - i m+i e x- 1

Then:

e
K (_,(_) :
n (e _-I) (e _- i)

+

e

(e _- i) (e _- I)

O_ _e I. xne-Xdx x-7_- i

o

n
dx

e_-X

ex- i

+

l jo
-- m+l (C_)
m+l

+
e_

x-_
e -i e - 1

• (Xqla) n dx

-x
e

x
e -1

j- (i + e_) 7 x n dx e -x
x

o e - i
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From this_ we have:

Kn(_,(7) =
i __l

(e _- i) (e_- I) m+l

Jm+l <j_>) m+l m+l

i__ + _-_ _ (_l) m+l _J!_____
e_- I e i e -P- I

-(m+l) [(-1)n-m e_ _m(CZ-_) +_m(C_-_,_ 1

+ e_ (_i) n-m m+1 (_+_) - (_ + m+1(_-_)

+ (-1) m+l J°+l(_)] } -

n+1

O_
n + i e - i

jo+_(_) _ (i +e _) _n(c,O)1

where:

n(a,b) =.faxn

b

-X
e dx

n

-x I n-r= - e x

r=0

n(n-l) ... (n-r+l)

a

C: Jn(_,C 0 and Kn(_C 0 at low temperature.

(4)

(5)
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We shall evaluate these integrals for two cases_

[i] _ >> _ >> i (KO >> h_0 >> KT)

_i] O_ >> _._ _ 0

For the other limiting case of _ > > _, Equation (i) of Appendix

is applicable.

From Equations

express ions:

and

n+z

[i] Jn (_'_) _ e-a_ _

we obtain the following simplified

n

m=o

(6)

Kn(_,(_) _ -a$1 I_n.,
+ n+l

' s ./
S=I

n

+ I (-l)n+mm+l

m=o

O0

(m+l)' (_)_n-mL___l1" sm+l _1

(7)

: _ >> _ >> i

Jn(_,_)
ee__l

+b_ 5 n(n- )(n- )(n- ) jo (oo)_7
I n-4

5,

n(n-l) j o 2(oo)
3 1. n-

(8)

n(n-1)v...., (n-5) Jn_e(OO)+ ..._
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n
(ea_a- i) (l-e -P)

n+1 n

_ n-m _
+ _ (m+l) ' e-_+ (- l)n-m i

m+1 " m+1
S

m----o

m+_ l+(-i)n

- n_ (i + e -_) _ n+ (9)

= S

: _>> _, _> 0

0
where J_(oo) is given by Equation (3) of Appendix . Equations (6)_

(7)_ (831 and (9) are sufficient to enable us to calculate bep(_ ) at very
low temperatures even in the very far infrared.
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APPENDIXD.

ONTHEQUESTIONOFEXISTENCEOF
Cos2__ i AT THESINGULARITY_=0

The theoretical calculations of the transition probability rested
on the assumption that there exists a cos2@which satisfies the con-
dition:

_(_) = 1,

and hence:

and:

= E(_k+rq) - E(k)

; r 3 s = (_+)

rE(q) shw = 0 (i)

cosO = (k'q/k q) (2)

The existence of such a cos@ was asserted by Wilson (1936) for

the processes which do not involve an external electromagnetic field.

We shall show that such a cosO exists also in the presence of the

electromagnetic field.

From Equation (1) 3 we have:

cose h kq - r
(3)

In comparing the order of magnitude of the three terms on the

R.H.S. of Equation (3) 3 we shall use the typical values:
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m* _ i0 (q)

UL~ 105 (cm/sec)

VF_ 108 (cm/sec)

__' K
qo =(h-UL-)\ -- __I0 8 (cm -l) for

N 102 oK

The first term is rewritten as:

A = m*_0 = 2_

and the second term as:

_

At ordinary and higher temperatures_ the phonons with q _ qo are

active_ and hence we have:

(4)

(5)

A < (2_)10 -2 for k > lb.

In this case_ the third term is the only important one_ and any

q equal to or smaller than (2kF) gives us cosG _ i satisfying the

condition (I). Thus_ we have

cos2e _ 1

cos2_ _ i/4 _,_

WFy

: qo >- 2kF

: qo < 2kF

(6)

In general_ the second of the above two applies. When qo _ 2kF' the

integral over q must be cut off at q=2k F.
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The scattering angle ¢ is defined as:

k = +r +s

Then, _0 is related to 0 by the relation.

(7)

k s + q2 + 2r cos_ ½ cos° cos# (8)

Thenj upon writing:

qo o#i (9)

k
k F _ (2_) _ V 8

we easily see that the second condition of Equation (6) corresponds

to

} < 78.1

in agreement with the usual value of 79 ° for elastic scattering

(k' = k)_ and that the first condition of Equation (6) corresponds to

0 < _ < _ thus scatterings are possible for all angles.

At low temperatures_ the phonons with

h uLq _ KT (i0)

are active_ and it is easily seen in Equation (3) that the first term

(e.m.-phonon term) can be the most important one. For such a case_

we have

I

A _ T for k _ IV.

and hence

i

cos20 < Te ; X _ IV (ii)

so that for T _ I°K_ it is assured that a cose@ _ I exists.
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